Home / Faculty / Dela Rosa, Paul Reine Kennett

Dela Rosa, Paul Reine Kennett

Assistant Professor
RoomMath Building Annex 211

Research Interests
Linear and multilinear algebra. Matrix Analysis. Matrix Theory. (specific topics: matrix compressions and dilations, matrix decompositions, matrix inequalities, numerical ranges and numerical radii)
Academic Groups
  • Education
    • PhD Mathematics (2021)
      Drexel University

      Dissertation: Ritz values and the free joint numerical radius
      Adviser: Hugo J. Woerdeman

    • MS Mathematics (2013)
      University of the Philippines Diliman

      Thesis: On products of \(S\)-Householder matrices
      Adviser: Dennis I. Merino and Agnes T. Paras

    • BS Mathematics (2010)
      University of the Philippines Diliman

      Thesis: \(J\)-Householder Matrices
      Adviser: Agnes T. Paras

  • Research

    visit website (external)

    I am currently working on problems involving matrix decompositions, matrix compressions, numerical ranges, and numerical radii.

    Graduate students

    • Current
      • Alexander Niño Gabriel C. Magtangob: M.S. Mathematics
    • Former
      • Clark Kenneth Espinosa: M.S. Mathematics (2024)
        Thesis title: On the Polar Decomposition of Generalized Companion Matrices
      • Juan Paolo C. Santos: M.S. Mathematics (2024)
        Thesis title: On commutators of unipotent matrices of index 2

    Undergraduate students

    • Current
      • Endaniel Aldrix J. Felix: B.S. Mathematics
      • Carl Justine C. Lao: B.S. Mathematics
    • Former
      • Japheth G. Dela Torre: B.S. Mathematics (2024)
        Thesis title: A Family of Completely PPT Maps
      • John Victor T. Noynoyan: B.S. Mathematics (2024)
        Thesis title: On Elliptical Numerical Ranges
      • Aedan Jarrod A. Potot: B.S. Mathematics (2024)
        Thesis title: Schur-Horn theorem and Ky Fan principle for symplectic eigenvalues
      • Alfonso M. Gavino: B.S. Mathematics (2023)
        Thesis title: Relating the Geometric Multiplicities of a Matrix with its Submatrices
      • Alexander Niño Gabriel C. Magtangob: B.S. Mathematics (2023)
        Thesis title: Schur’s Triangularization Theorem and Sylvester’s Theorem for Dual Complex Matrices
      • Samantha Ysabel D. Alcantara: B.S. Mathematics (2023)
        Thesis title: On the numerical range of {1,2}-inverses of a matrix
      • Ricci Mae DC. Margallo: B.S. Mathematics (2022)
        Thesis title: Ritz Values of Weighted Shift Matrices

     

  • Teaching

    First Semester AY 2024-2025

    • Classes
      • Math 21 TWHFQ-8, TWThF 7:15-8:15
      • Math 21 TWHFR-8, TWThF 8:45-9:45
      • Math 21 TWHFU-2, TWThF 10:15-11:15
      • Math 21 TWHFV-7, TWThF 11:45-12:45
    • Consultation Hours
      • TWThF 1:00-3:30
  • Publications
    1. K. L. Dela Rosa and H. J. Woerdeman, Completing an Operator Matrix and the Free Joint Numerical Radius, Complex Anal. Oper. Theory 16, 114 (2022).
    2. K. L. Dela Rosa and H. J. Woerdeman, Continuity of submatrices and Ritz sets associated to a point in the numerical range, Linear Algebra Appl. 624 (2021) 1-13.
    3. K. L. Dela Rosa and H. J. Woerdeman, Location of Ritz values in the numerical range of normal matrices, Linear Multilinear Algebra (2020).
    4. K. L. Dela Rosa, D. I. Merino, A. T. Paras, The subspaces spanned by Householder vectors associated with an orthogonal or a symplectic matrix, Linear Algebra Appl. 546 (2018) 37-49.
    5. R. L. Dela Cruz, K. L. Dela Rosa, Each \(2n\)-by-\(2n\) complex symplectic matrix is a product of \(n+1\) commutators of \(J\)-symmetries, Linear Algebra Appl. 517 (2017) 53-62.
    6. R. L. Dela Cruz, K. L. Dela Rosa, D. I. Merino, A. T. Paras, The Cartan-Dieudonné-Scherk theorems for complex \(S\)-orthogonal matrices, Linear Algebra Appl. 458 (2014) 251-260.
    7. K. L. Dela Rosa, D. I. Merino, A. T. Paras, The \(J\)-Householder matrices, Linear Algebra Appl. 436 (2012) 1189-1194.