Dela Rosa, Paul Reine Kennett
Linear and multilinear algebra. Matrix Analysis. Matrix Theory. (specific topics: matrix compressions and dilations, matrix decompositions, matrix inequalities, numerical ranges and numerical radii)
-
Education
-
PhD Mathematics (2021)
Drexel UniversityDissertation: Ritz values and the free joint numerical radius
Adviser: Hugo J. Woerdeman -
MS Mathematics (2013)
University of the Philippines DilimanThesis: On products of \(S\)-Householder matrices
Adviser: Dennis I. Merino and Agnes T. Paras -
BS Mathematics (2010)
University of the Philippines DilimanThesis: \(J\)-Householder Matrices
Adviser: Agnes T. Paras
-
PhD Mathematics (2021)
-
Research
I am currently working on problems involving matrix decompositions, matrix compressions, numerical ranges, and numerical radii.
Graduate students
- Current
- Aedan Jarrod A. Potot: M.S. Mathematics
- Eloise P. Misa: Ph.D. Mathematics (co-advised with Tin-Yau Tam)
- Jomar Kevin D. Sta. Ana: Ph.D. Mathematics (co-advised with Ralph L. de la Cruz)
- Former
- Alexander Niño Gabriel C. Magtangob: M.S. Mathematics (2025)
Thesis title: On the k-Numerical Range of Cyclic Shift Matrices - Clark Kenneth Espinosa: M.S. Mathematics (2024)
Thesis title: On the Polar Decomposition of Generalized Companion Matrices - Juan Paolo C. Santos: M.S. Mathematics (2024)
Thesis title: On commutators of unipotent matrices of index 2
- Alexander Niño Gabriel C. Magtangob: M.S. Mathematics (2025)
Undergraduate students
- Current
- Miho G. Ikeda: B.S. Mathematics
- Gabriel Cedrick L. Gerundiano: B.S. Mathematics
- Former
- Endaniel Aldrix J. Felix: B.S. Mathematics (2025)
Thesis title: Representation Theory and Association Schemes - Carl Justine C. Lao: B.S. Mathematics (done with thesis work)
Thesis title: On S-numerical Ranges and the Hyperbolical Range Theorem - Japheth G. Dela Torre: B.S. Mathematics (2024)
Thesis title: A Family of Completely PPT Maps - John Victor T. Noynoyan: B.S. Mathematics (2024)
Thesis title: On Elliptical Numerical Ranges - Aedan Jarrod A. Potot: B.S. Mathematics (2024)
Thesis title: Schur-Horn theorem and Ky Fan principle for symplectic eigenvalues - Alfonso Martin G. Gavino: B.S. Mathematics (2023)
Thesis title: Relating the Geometric Multiplicities of a Matrix with its Submatrices - Alexander Niño Gabriel C. Magtangob: B.S. Mathematics (2023)
Thesis title: Schur’s Triangularization Theorem and Sylvester’s Theorem for Dual Complex Matrices - Samantha Ysabel D. Alcantara: B.S. Mathematics (2023)
Thesis title: On the numerical range of {1,2}-inverses of a matrix - Ricci Mae DC. Margallo: B.S. Mathematics (2022)
Thesis title: Ritz Values of Weighted Shift Matrices
- Endaniel Aldrix J. Felix: B.S. Mathematics (2025)
- Current
-
Teaching
First Semester AY 2025-2026
- Classes
-
Math 110.2: Linear Algebra, Section THW, TTh 1:00-2:30
-
Math 110.2: Linear Algebra, Section THX, TTh 2:30-4:00
-
Math 197: Introduction to Matrix Analysis, Section WFW, WF 1:00-2:30
-
- Consultation Hours
- TWThF 9:00-11:30
- Classes
-
Publications
- K.L. Dela Rosa, Zero-dilation indices and numerical ranges, Linear Algebra Appl. 726 (2025) 91-112.
- R.J. L. de la Cruz, K. L. Dela Rosa, and A. V. Galimba, Fillmore’s Theorem and Sums of Nilpotent Quaternion Matrices, Electron. J. Linear Algebra. 41 (2025) 266-276.
- K.L. Dela Rosa and J. P. C. Santos, On commutators of unipotent matrices of index 2, Linear Algebra Appl. 710 (2025) 385-404.
- K.L. Dela Rosa and H. J. Woerdeman, Completing an Operator Matrix and the Free Joint Numerical Radius, Complex Anal. Oper. Theory 16, 114 (2022).
- K.L. Dela Rosa and H. J. Woerdeman, Continuity of submatrices and Ritz sets associated to a point in the numerical range, Linear Algebra Appl. 624 (2021) 1-13.
- K. L. Dela Rosa and H. J. Woerdeman, Location of Ritz values in the numerical range of normal matrices, Linear Multilinear Algebra. 69 (2021) 2749-2778.
- K. L. Dela Rosa, D. I. Merino, and A. T. Paras, The subspaces spanned by Householder vectors associated with an orthogonal or a symplectic matrix, Linear Algebra Appl. 546 (2018) 37-49.
- R. J. L. de la Cruz and K. L. Dela Rosa, Each 2n-by-2n complex symplectic matrix is a product of n+1 commutators of J-symmetries, Linear Algebra Appl. 517 (2017) 53-62.
- R. J. L. de la Cruz, K. L. Dela Rosa, D. I. Merino, and A. T. Paras, The Cartan-Dieudonné-Scherk theorems for complex S-orthogonal matrices, Linear Algebra Appl. 458 (2014) 251-260.
- K. L. Dela Rosa, D. I. Merino, and A. T. Paras, The J-Householder matrices, Linear Algebra Appl. 436 (2012) 1189-1194.
