INSTITUTE OF MATHEMATICS College of Science University of the Philippines Diliman

Math 180.1 Course Syllabus

A. Course Catalogue Description

Course Number	Math 180.1
Course Title	Operations Research I
Course Description	Introduction to linear programming; the simplex method; duality; sensitiv-
	ity analysis; integer programming; nonlinear programming
Prerequisite	Math 40/equiv.
Course Credit	3 units
Number of Hours	3 hours/week

B. Course Content

- I. Course Introduction and Orientation
- II. Linear Programming
 - 1. Formulation of LP models
 - 2. Assumptions for LP models
 - 3. Graphical solution
 - 4. Special conditions of LP models
 - 5. LP in standard form and canonical form

III. Simplex Method

- 1. Basics of the simplex method
- 2. Big M simplex method
- 3. Two phase simplex method
- 4. Revised simplex method
- 5. Numerical implementation using computer programs
- IV. Duality
 - 1. Formulation of the dual problem
 - 2. Weak and strong duality theorems
 - 3. Complementary slackness conditions
 - 4. Karush-Kuhn-Tucker optimality conditions
- V. Sensitivity Analysis
 - 1. Change in cost vector
 - 2. Change in the right-hand-side vector
 - 3. Change in the technology matrix
- VI. Integer Programming
 - 1. Mathematical models
 - 2. Branch-bound method
 - 3. Cutting plane method
- VII. Nonlinear programming
 - 1. Mathematical models
 - 2. Univariate unconstrained optimization: optimality conditions and solution method
 - 3. Multivariate unconstrained optimization: optimality conditions and gradient-based methods
 - 4. Multivariate constrained optimization
 - 5. Lagrange multiplier technique
 - 6. Karush-Kuhn-Tucker optimality conditions

For a more detailed syllabus, send an email request to ddapr@math.upd.edu.ph.