INSTITUTE OF MATHEMATICS College of Science University of the Philippines Diliman

Math 108 Course Syllabus

A. Course Catalogue Description

Course Number	Math 108
Course Title	Foundations of Abstract Mathematics
Course Description	Propositional and predicate calculus; methods of proof; algebra of sets;
	relations and functions; finite and infinite sets
Prerequisite	Math 21/equiv. or COI
Course Credit	4 units
Number of Hours	4 hours/week

B. Course Content

- I. Course Introduction
- II. Propositional Calculus
 - 1. Propositions and Logical Connectives
 - 2. Truth Tables
 - 3. Tautology, Contradiction and Contingency
 - 4. Equivalent Statements
 - 5. Arguments and Valid Deductions
- III. Set Equality, Inclusion, Membership
- IV. Predicate Calculus
 - 1. Truth Set and Universe of Discourse
 - 2. Universal and Existential Quantifiers
 - 3. Valid Deductions
- V. Basic Proof Methods
 - 1. Proofs of Complex Propositions and Quantified Predicates
 - 2. Epsilon-N Proofs of Convergence of Sequences
 - 3. Principle of Mathematical Induction
- VI. Algebra of Sets
 - 1. Russell's Paradox and Axiom of Separation
 - 2. Set Operations and Related Proofs
- VII. Relations
 - 1. Domain, Range, Inverse and Composition
 - 2. Reflexive, Symmetric, Transitive, and Antisymmetric Relations
 - 3. Order Relations, Partial and Total Orders
 - 4. Hausdorff Maximality Principle
 - 5. Supremum and Infimum of Subsets of Real Numbers
 - 6. Equivalence Relations; Congruence Modulo m
 - 7. Equivalence Classes and Partitions
- VIII. Functions
 - 1. Restriction and Extension
 - 2. Injection, Surjection, and Bijection
 - 3. Inverse and Composition of Functions
 - 4. Image and Inverse Image of a Set
 - 5. Properties of Images and Inverse Images of Union and Intersection of Sets

- 6. Permutations on Finite Sets
- IX. Finite and Infinite Sets
 - 1. Equivalence of Sets
 - 2. Cardinality of Finite Sets
 - 3. Formulas for the Cardinality of a Union, Intersection, and Power Set
 - 4. Infinite Sets and Aleph Null
 - 5. Countable and Uncountable Sets
 - 6. Partial Order ("Dominated by") on Sets
 - 7. Schröder-Berstein Theorem and Cantor's Theorem
 - 8. Continuum Hypothesis
 - 9. Countability of Rationals and Uncountability of Real Numbers
 - 10. Countability of the Union and Cartesian Product of Sets

For a more detailed syllabus, send an email request to ddapr@math.upd.edu.ph.