Composite Structure with Highly Contrasting Conductivities:
Homogenization of Hyperbolic Equation

A. K. Nandakumaran

Department of Mathematics
Indian Institute of Science, Bangalore 560012.
Email: nands@math.iisc.ernet.in
Outline

1. A Brief Introduction to Homogenization
Outline

1. A Brief Introduction to Homogenization
2. High Contrasting Composite
Outline

1. A Brief Introduction to Homogenization
2. High Contrasting Composite
3. Apriori Estimates and Extension Operators
Outline

1. A Brief Introduction to Homogenization
2. High Contrasting Composite
3. Apriori Estimates and Extension Operators
4. Two-scale System
A Brief Introduction to Homogenization
What is Homogenization (Mathematical)?

Let Ω be a bounded domain in \mathbb{R}^n. Define, for $\alpha, \beta > 0$, the class of matrix functions:

$$E(\Omega) = E(\alpha, \beta, \Omega) = \{A = [a_{ij}(x)] : A \text{ is symmetric and satisfies (1)}\}.$$
What is Homogenization (Mathematical)?

Let Ω be a bounded domain in \mathbb{R}^n. Define, for $\alpha, \beta > 0$, the class of matrix functions:

$$E(\Omega) = E(\alpha, \beta, \Omega) = \{ A = [a_{ij}(x)] : A \text{ is symmetric and satisfies } (1) \}.$$

We assume the matrix A satisfies

$$\alpha |\xi|^2 \leq \langle A(x)\xi, \xi \rangle = a_{ij} \xi_i \xi_j \leq \beta |\xi|^2, \forall \xi \in \mathbb{R}^n. \quad (1)$$

The first inequality is nothing but the uniform ellipticity.
What is Homogenization (Mathematical)?

Let Ω be a bounded domain in \mathbb{R}^n. Define, for $\alpha, \beta > 0$, the class of matrix functions:

$$E(\Omega) = E(\alpha, \beta, \Omega) = \{A = [a_{ij}(x)] : A \text{ is symmetric and satisfies (1)}\}.$$

We assume the matrix A satisfies

$$\alpha |\xi|^2 \leq \langle A(x)\xi, \xi \rangle = a_{ij}\xi_i\xi_j \leq \beta |\xi|^2, \forall \xi \in \mathbb{R}^n. \quad (1)$$

The first inequality is nothing but the uniform ellipticity.

Given an element $A \in E(\Omega)$, associate the PDE operator $A = -\frac{\partial}{\partial x_i}(a_{ij} \frac{\partial}{\partial x_j})$ and introduce the elliptic boundary value problem

$$Au = f \text{ in } \Omega$$

$$u = 0 \text{ on } \partial\Omega. \quad (2)$$
What is Homogenization (Mathematical)?, Conti..

The aim is to introduce certain convergence in the above class of matrix functions relevant to the homogenization theory.
What is Homogenization (Mathematical)?, Conti..

- The aim is to introduce certain convergence in the above class of matrix functions relevant to the homogenization theory.

- \((G\)-convergence or \(H\)-convergence): We say a family \([a_{ij}]\) \(\varepsilon \to 0\), \(H\)-converges to \(a_{ij}^*\) as \(\varepsilon \to 0\) if

 \[i) \quad u_\varepsilon \rightharpoonup u \text{ in } H^1_0(\Omega) \text{ weak}\]

 \[ii) \quad a^\varepsilon_{ij}(x) \frac{\partial u_\varepsilon}{\partial x_j} \rightharpoonup a^*_{ij}(x) \frac{\partial u}{\partial x_j} \text{ in } L^2(\Omega) \text{ weak.}\]
What is Homogenization (Mathematical)?, Conti..

The aim is to introduce certain convergence in the above class of matrix functions relevant to the homogenization theory.

** (G- convergence or H - convergence): We say a family \{[a_{ij}^\varepsilon]\}_{\varepsilon>0}, H\text{-converges to } [a_{ij}^*]\text{ as } \varepsilon \to 0\text{ if}

\begin{align*}
 i) & \quad u_\varepsilon \rightharpoonup u \text{ in } H^1_0(\Omega) \text{ weak} \\
 ii) & \quad a_{ij}^\varepsilon(x) \frac{\partial u_\varepsilon}{\partial x_j} \rightharpoonup a_{ij}^*(x) \frac{\partial u}{\partial x_j} \text{ in } L^2(\Omega) \text{ weak.}
\end{align*}

Here \(u^\varepsilon, u \) are, respectively, the solution of (2) corresponding to the operators \(A^\varepsilon, A^* \) and we write

\[
[a_{ij}^\varepsilon] \underset{H}{\rightharpoonup} [a_{ij}^*] \text{ or simply } A^\varepsilon \underset{H}{\rightharpoonup} A^*.
\]
So in a nutshell, one has a family of differential operators and we would like to obtain the limit operator. In some sense the limit behaviour of the differential operators.
What is Homogenization (Mathematical)?, Conti..

♣ So in a nutshell, one has a family of differential operators and we would like to obtain the limit operator. In some sense the limit behaviour of the differential operators.

♣ The differential operators need not be elliptic, it can come from many other situations, like parabolic, hyperbolic based on applications. But studying for elliptic operators is more fundamental even in other applications.
So in a nutshell, one has a family of differential operators and we would like to obtain the limit operator. In some sense the limit behaviour of the differential operators.

The differential operators need not be elliptic, it can come from many other situations, like parabolic, hyperbolic based on applications. But studying for elliptic operators is more fundamental even in other applications.

Why do we need to study such a special convergence?
So in a nutshell, one has a family of differential operators and we would like to obtain the limit operator. In some sense the limit behaviour of the differential operators.

The differential operators need not be elliptic, it can come from many other situations, like parabolic, hyperbolic based on applications. But studying for elliptic operators is more fundamental even in other applications.

Why do we need to study such a special convergence? Why it is different from other asymptotic analysis and a new name homogenization?
So in a nutshell, one has a family of differential operators and we would like to obtain the limit operator. In some sense the limit behaviour of the differential operators.

The differential operators need not be elliptic, it can come from many other situations, like parabolic, hyperbolic based on applications. But studying for elliptic operators is more fundamental even in other applications.

Why do we need to study such a special convergence? Why it is different from other asymptotic analysis and a new name homogenization? For this one need to understand the physical applications of homogenization.
What is Homogenization (Physical)?

It is the study of macroscopic and/or bulk behavior of solutions to partial differential or other type of equations posed on a heterogeneous domain/media, where the heterogeneities are present at microscopic scale ε.
What is Homogenization (Physical)?

♣ It is the study of macroscopic and/or bulk behavior of solutions to partial differential or other type of equations posed on a heterogeneous domain/media, where the heterogeneities are present at microscopic scale ε.

♣ The heterogeneities can be in the form of fine mixing of two or more materials with different physical properties in the domain or due to singularities in the domain in the form of pores, granules etc.
Homogenization has many applications in:

- the study of properties (structural, electro-magnetic, thermal etc.) of composites.
Homogenization has many applications in:

- the study of properties (structural, electro-magnetic, thermal etc.) of composites.
- study of flow in porous media (flow of oil, water through subsurface, pollution of ground water, flow of resins and polymers in moulds etc.)
Homogenization has many applications in:

- the study of properties (structural, electro-magnetic, thermal etc.) of **composites**.
- study of flow in porous media (flow of oil, water through subsurface, pollution of ground water, flow of resins and polymers in moulds etc.)
- analysis of vibrations of thin structures.
Homogenization has many applications in:

- the study of properties (structural, electro-magnetic, thermal etc.) of composites.
- study of flow in porous media (flow of oil, water through subsurface, pollution of ground water, flow of resins and polymers in moulds etc.)
- analysis of vibrations of thin structures.
- homogenization with oscillating (rough) boundary.
Few Sample Composites
Few Sample Composites; conti...

Plywood

Concrete
Few Sample Composites; conti...

Figure 21. Microstructures of heterogeneous materials: aluminum with aluminum oxide reinforcement (left) and SiC-Titanium composite (right).
Figure 1.1. The two-dimensional microstructure of Larsen, Sigmund, and Bouwstra (1997), which will expand laterally when stretched longitudinally. Here the black region is relatively stiff and is surrounded by a void or very compliant material.
Sample Composites; Conti..

Figure 22.1. A second-rank laminate polycrystal that has the largest effective conductivity amongst all isotropic conducting polycrystals. The volume fractions f and $f' = 1 - f$ are chosen so that the conductivity in the x_3 direction is the arithmetic average $(\lambda_1 + \lambda_2 + \lambda_3)/3$. The conductivities in the other two directions are then also the arithmetic average. After Avellaneda, Cherkaev, Lurie, and Milton (1988).
Sample Composites, Conti..
Periodically Perforated Domain
Oscillating Boundary: Sample Domains
Oscillating Boundary: Sample Domains
The problem posed on the heterogeneous domain has a unique solution.
Nature of a typical problem in homogenization

♣ The problem posed on the heterogeneous domain has a unique solution.

♣ Heterogeneities cause the solution to develop high frequency oscillations.
Nature of a typical problem in homogenization

♦ The problem posed on the heterogeneous domain has a unique solution.

♦ Heterogeneities cause the solution to develop high frequency oscillations.

♦ So a direct numerical study will not be able to capture either the bulk behavior or the oscillations present in the solutions which are at a microscopic level.
Periodic Oscillations in Heterogeneities
What is the way out?

Do an asymptotic analysis as $\varepsilon \to 0$, that is we try to approximate the solution u_ε corresponding to the heterogeneous domain, for small $\varepsilon > 0$, by the solution of a homogenized problem in which the small parameter do not appear.
What is the way out?

Do an asymptotic analysis as \(\varepsilon \rightarrow 0 \), that is we try to approximate the solution \(u_\varepsilon \) corresponding to the heterogeneous domain, for small \(\varepsilon > 0 \), by the solution of a homogenized problem in which the small parameter do not appear.

The mathematical problem is:
- to identify the homogenized equation
What is the way out?

Do an asymptotic analysis as $\varepsilon \to 0$, that is we try to approximate the solution u_ε corresponding to the heterogeneous domain, for small $\varepsilon > 0$, by the solution of a homogenized problem in which the small parameter do not appear.

The mathematical problem is:
• to identify the homogenized equation
• to prove convergence of u_ε corresponding to the heterogeneous equation to that of the homogeneous equations as $\varepsilon \to 0$.
What is the way out?

Do an asymptotic analysis as $\varepsilon \rightarrow 0$, that is we try to approximate the solution u_ε corresponding to the heterogeneous domain, for small $\varepsilon > 0$, by the solution of a homogenized problem in which the small parameter do not appear.

The mathematical problem is:
- to identify the homogenized equation
- to prove convergence of u_ε corresponding to the heterogeneous equation to that of the homogeneous equations as $\varepsilon \rightarrow 0$.
- to capture the oscillations in u_ε (known as correctors in the literature)
What is the way out?

Do an asymptotic analysis as $\varepsilon \to 0$, that is we try to approximate the solution u_ε corresponding to the heterogeneous domain, for small $\varepsilon > 0$, by the solution of a homogenized problem in which the small parameter do not appear.

The mathematical problem is:
- to identify the homogenized equation
- to prove convergence of u_ε corresponding to the heterogeneous equation to that of the homogeneous equations as $\varepsilon \to 0$.
- to capture the oscillations in u_ε (known as **correctors** in the literature)
- the solution together with the correctors can be used (and also can be computed numerically) to get good approximation to the original solution.
Various Methods

- Formal asymptotic expansion
- Energy method via test functions
- Compensated Compactness
- Gamma Convergence
- Two Scale (Multi-scale) Convergence
- Fourier (Bloch wave) method
- Unfolding method
Composite Structure with Two High Contrasting Materials

Composite material \(\Omega_{\varepsilon} = B_{\varepsilon} \cup M_{\varepsilon} \) with:

- Soft inclusions, \(B_{\varepsilon} \)
- Stiff components, \(M_{\varepsilon} \)
Hyperbolic Equation

\[
(P_\varepsilon) \quad \begin{cases}
L_\varepsilon u_\varepsilon := u''_\varepsilon - \text{div} \left(a_\varepsilon(x) A \left(x, \frac{x}{\varepsilon} \right) \nabla u_\varepsilon \right) + u_\varepsilon = f_\varepsilon \\
\text{in } \Omega_T = (0, T) \times \Omega, \\
u_\varepsilon = 0 \text{ on } \partial\Omega_T = (0, T) \times \Gamma, \quad u_\varepsilon(0) = u^0_\varepsilon, \quad u'_\varepsilon(0) = u^1_\varepsilon.
\end{cases}
\]
Hyperbolic Equation

\[
\begin{cases}
L_\varepsilon u_\varepsilon := u_\varepsilon'' - \text{div} \left(a_\varepsilon(x) A(x, \frac{x}{\varepsilon}) \nabla u_\varepsilon \right) + u_\varepsilon = f_\varepsilon \\
\text{in } \Omega_T = (0, T) \times \Omega,
\end{cases}
\]

\[
\begin{align*}
L_\varepsilon u_\varepsilon &= 0 \text{ on } \partial \Omega_T = (0, T) \times \Gamma, \\
u_\varepsilon(0) &= u_\varepsilon^0, \quad u_\varepsilon'(0) = u_\varepsilon^1.
\end{align*}
\]

- The coefficients \(a_\varepsilon \) takes the form \(a_\varepsilon(x) = \alpha_\varepsilon^2 \chi_{B_\varepsilon} + \chi_{M_\varepsilon} \) and \(A \) is uniformly elliptic.
Hyperbolic Equation

\[
\begin{cases}
L_\varepsilon u_\varepsilon := u_\varepsilon'' - \text{div} \left(a_\varepsilon(x) A \left(x, \frac{x}{\varepsilon} \right) \nabla u_\varepsilon \right) + u_\varepsilon = f_\varepsilon \\
\text{in } \Omega_T = (0, T) \times \Omega, \\
u_\varepsilon = 0 \text{ on } \partial\Omega_T = (0, T) \times \Gamma, \quad u_\varepsilon(0) = u_\varepsilon^0, \quad u'_\varepsilon(0) = u_1^1.
\end{cases}
\]

- The coefficients \(a_\varepsilon \) takes the form \(a_\varepsilon(x) = \alpha_\varepsilon^2 \chi_{B_\varepsilon} + \chi_{M_\varepsilon} \) and \(A \) is uniformly elliptic.

- Here \(\alpha_\varepsilon \) is a small parameter which goes to zero. Let \(\alpha = \lim_{\varepsilon \to 0} \frac{\alpha_\varepsilon}{\varepsilon} \).
Hyperbolic Equation

\[
\begin{cases}
L_\varepsilon u_\varepsilon := u''_\varepsilon - \text{div} \left(a_\varepsilon(x) A \left(x, \frac{x}{\varepsilon} \right) \nabla u_\varepsilon \right) + u_\varepsilon = f_\varepsilon \\
in \Omega_T = (0, T) \times \Omega,
\end{cases}
\]

\[
u_\varepsilon = 0 \text{ on } \partial \Omega_T = (0, T) \times \Gamma, \quad u_\varepsilon(0) = u_0^\varepsilon, \quad u'_\varepsilon(0) = u_1^\varepsilon.
\]

- The coefficients \(a_\varepsilon \) takes the form \(a_\varepsilon(x) = \alpha_\varepsilon^2 \chi_{B_\varepsilon} + \chi_{M_\varepsilon} \) and \(A \) is uniformly elliptic.

- Here \(\alpha_\varepsilon \) is a small parameter which goes to zero. Let \(\alpha = \lim_{\varepsilon \to 0} \frac{\alpha_\varepsilon}{\varepsilon} \).

- 3 cases; \(\alpha = 0, \alpha = +\infty \) and \(0 < \alpha < \infty \) which is the critical case. We mainly concentrate on critical case and take \(\alpha_\varepsilon = \varepsilon \).
Hyperbolic Equation

\[
\begin{cases}
L_\varepsilon u_\varepsilon := u''_\varepsilon - \text{div} \left(a_\varepsilon(x) A(x, \frac{x}{\varepsilon}) \nabla u_\varepsilon \right) + u_\varepsilon = f_\varepsilon \\
\text{in } \Omega_T = (0, T) \times \Omega, \\
u_\varepsilon = 0 \text{ on } \partial \Omega_T = (0, T) \times \Gamma, \quad u_\varepsilon(0) = u_\varepsilon^0, \quad u'_\varepsilon(0) = u'_\varepsilon^1.
\end{cases}
\]

- The coefficients a_ε takes the form $a_\varepsilon(x) = \alpha_\varepsilon^2 \chi_{B_\varepsilon} + \chi_{M_\varepsilon}$ and A is uniformly elliptic.

- Here α_ε is a small parameter which goes to zero. Let $\alpha = \lim_{\varepsilon \to 0} \alpha_\varepsilon$.

- 3 cases; $\alpha = 0$, $\alpha = +\infty$ and $0 < \alpha < \infty$ which is the critical case. We mainly concentrate on critical case and take $\alpha_\varepsilon = \varepsilon$.

- Hence B_ε is the soft inclusions and M_ε is stiff material part.
Hyperbolic Equation

\[
\begin{cases}
 L_\varepsilon u_\varepsilon := u''_\varepsilon - \text{div} \left(a_\varepsilon(x) A(x, \frac{x}{\varepsilon}) \nabla u_\varepsilon \right) + u_\varepsilon = f_\varepsilon \\
 \text{in } \Omega_T = (0, T) \times \Omega, \\
 u_\varepsilon = 0 \text{ on } \partial \Omega_T = (0, T) \times \Gamma, \quad u_\varepsilon(0) = u_0^\varepsilon, \quad u'_\varepsilon(0) = u_1^\varepsilon.
\end{cases}
\]

- The coefficients \(a_\varepsilon \) takes the form \(a_\varepsilon(x) = \alpha_\varepsilon^2 \chi_{B_\varepsilon} + \chi_{M_\varepsilon} \) and \(A \) is uniformly elliptic.
- Here \(\alpha_\varepsilon \) is a small parameter which goes to zero. Let \(\alpha = \lim_{\varepsilon \to 0} \frac{\alpha_\varepsilon}{\varepsilon} \).
- 3 cases; \(\alpha = 0 \), \(\alpha = +\infty \) and \(0 < \alpha < \infty \) which is the critical case. We mainly concentrate on critical case and take \(\alpha_\varepsilon = \varepsilon \).
- Hence \(B_\varepsilon \) is the soft inclusions and \(M_\varepsilon \) is stiff material part.
- We wish to study the limiting behavior of the solution.
Assumptions on the Data

\[(A1) \quad \int_\Omega |u_\varepsilon^0|^2 + \int_{B_\varepsilon} \alpha_\varepsilon^2 |\nabla u_\varepsilon^0|^2 + \int_{M_\varepsilon} |\nabla u_\varepsilon^0|^2 + \int_{\Omega} |u_\varepsilon^1|^2 < \infty\]
Assumptions on the Data

(A1) \[\int_{\Omega} |u_\varepsilon^0|^2 + \int_{B_\varepsilon} \alpha_\varepsilon^2 |\nabla u_\varepsilon^0|^2 + \int_{M_\varepsilon} |\nabla u_\varepsilon^0|^2 + \int_{\Omega} |u_\varepsilon^1|^2 < \infty \]

(A2) \[\|f_\varepsilon\|_{L^2(\Omega_T)} \leq C, \]
Assumptions on the Data

(A1) \[\int_\Omega |u_\varepsilon^0|^2 + \int_{B_\varepsilon} \alpha_\varepsilon^2 |\nabla u_\varepsilon^0|^2 + \int_{M_\varepsilon} |\nabla u_\varepsilon^0|^2 + \int_\Omega |u_\varepsilon^1|^2 < \infty \]

(A2) \[\|f_\varepsilon\|_{L^2(\Omega_T)} \leq C, \]

The assumption (A1) is natural based on energy estimates which we are going to present it shortly. From the second assumption, we get

\[f_\varepsilon \rightharpoonup f \text{ weakly in } L^2(\Omega_T) \tag{3} \]

\[f_\varepsilon \overset{2-s}{\rightharpoonup} f_0(t, x, y) \text{ in } L^2(\Omega_T) \text{ and } f(t, x) = \int f_0(t, x, y) dy \tag{4} \]
Assumptions on the Data

\((A1)\) \[\int_{\Omega} |u_\varepsilon^0|^2 + \int_{B_\varepsilon} \alpha_\varepsilon^2 |\nabla u_\varepsilon^0|^2 + \int_{M_\varepsilon} |\nabla u_\varepsilon^0|^2 + \int_{\Omega} |u_\varepsilon^1|^2 < \infty \]

\((A2)\) \[\|f_\varepsilon\|_{L^2(\Omega_T)} \leq C, \]

- The assumption \((A1)\) is natural based on energy estimates which we are going to present it shortly. From the second assumption, we get

\[f_\varepsilon \rightharpoonup f \text{ weakly in } L^2(\Omega_T) \quad (3) \]

\[f_\varepsilon \rightharpoonup f_0(t, x, y) \text{ in } L^2(\Omega_T) \text{ and } f(t, x) = \int f_0(t, x, y) \, dy \quad (4) \]

- The second convergence is known as two-scale convergence which we use it for our homogenization problem.
Two Scale Convergence

Definition (Two-scale convergence)

A sequence of functions \(\{v_\varepsilon\} \) in \(L^2(\Omega_T) \) is said to two-scale converge to a limit \(v \in L^2(\Omega_T \times Y) \) (denoted as \(v_\varepsilon \overset{2s}{\rightharpoonup} v \)) if

\[
\int_{\Omega_T} v_\varepsilon \phi \left(t, x, \frac{x}{\varepsilon} \right) \, dx \, dt \rightarrow \int_{\Omega_T} \int_Y v(t, x, y) \phi(t, x, y) \, dy \, dx \, dt
\]

For all \(\phi \in L^2(\Omega_T; C_\#(Y)) \).
Two Scale Convergence

Definition (Two-scale convergence)

A sequence of functions $\{v_\varepsilon\}$ in $L^2(\Omega_T)$ is said to two-scale converge to a limit $v \in L^2(\Omega_T \times Y)$ (denoted as $v_\varepsilon \overset{2s}{\rightharpoonup} v$) if

$$
\int_{\Omega_T} v_\varepsilon \phi \left(t, x, \frac{x}{\varepsilon} \right) \, dx \, dt \to \int_{\Omega_T} \int_Y v(t, x, y) \phi(t, x, y) \, dy \, dx \, dt
$$

For all $\phi \in L^2(\Omega_T; C_\#(Y))$.

Further, if v_0 is the weak limit of $\{v_\varepsilon\}$ in $L^2(\Omega_T)$, then

$$
v_0(t, x) = \int_Y v(t, x, y) \, dy.
$$
We have the following compactness theorem.

Theorem (Compactness)

For any bounded sequence v_ε in $L^2(\Omega_T)$, there exist a subsequence and $v \in L^2(\Omega_T \times Y)$ such that, v_ε two-scale converges to v along the subsequence.

Also, if v_ε is bounded in $L^2(0, T; H^1(\Omega))$, then v is independent of y and is in $L^2(0, T; H^1(\Omega))$, and there exists a $v_1 \in L^2(\Omega_T; H_\#^1(Y))$ such that, up to a subsequence, ∇v_ε two-scale converges to $\nabla v + \nabla_y v_1$. □
Energy of the System

\[E_\varepsilon(t) = \frac{1}{2} \left\{ \int_\Omega |u'_\varepsilon(t)|^2 + \int_\Omega |u_\varepsilon(t)|^2 + \int_\Omega \alpha_\varepsilon^2 \chi_{B_\varepsilon} |\nabla u_\varepsilon(t)|^2 + \int_\Omega \chi_{M_\varepsilon} |\nabla u_\varepsilon(t)|^2 \right\} \]

\[= E_1^\varepsilon(t) + E_2^\varepsilon(t) + E_3^\varepsilon(t) + E_4^\varepsilon(t) \]
Energy of the System

\[E_\varepsilon(t) = \frac{1}{2} \left\{ \int_\Omega |u'_\varepsilon(t)|^2 + \int_\Omega |u_\varepsilon(t)|^2 \right. \]
\[+ \left. \int_\Omega \alpha^2_\varepsilon \chi_{B_\varepsilon} |\nabla u_\varepsilon(t)|^2 + \int_\Omega \chi_{M_\varepsilon} |\nabla u_\varepsilon(t)|^2 \right\} \]
\[= E^1_\varepsilon(t) + E^2_\varepsilon(t) + E^3_\varepsilon(t) + E^4_\varepsilon(t) \]

Proposition

There exists a constant \(C > 0 \) independent of \(\varepsilon \) such that

\[E_\varepsilon(t) < C \]
Apriori Estimates

- The above proposition will give us the following estimates

Proposition

There exists a constant $C > 0$ independent of ε such that

\[
\begin{align*}
\| u_\varepsilon \|_{L^\infty_t L^2_x} & \leq C, \\
\| u'_\varepsilon \|_{L^\infty_t L^2_x} & \leq C, \\
\| \alpha_\varepsilon \nabla u_\varepsilon \|_{L^\infty_t L^2_x(B_\varepsilon)} & \leq C, \\
\| \nabla u_\varepsilon \|_{L^\infty_t L^2_x(M_\varepsilon)} & \leq C.
\end{align*}
\]
Apriori Estimates

- The above proposition will give us the following estimates

Proposition

There exists a constant \(C > 0 \) independent of \(\varepsilon \) such that

\[
\begin{align*}
\| u_\varepsilon \|_{L^\infty_t L^2_x} & \leq C, \\
\| u'_\varepsilon \|_{L^\infty_t L^2_x} & \leq C, \\
\| \alpha_\varepsilon \nabla u_\varepsilon \|_{L^\infty_t L^2_x(B_\varepsilon)} & \leq C, \\
\| \nabla u_\varepsilon \|_{L^\infty_t L^2_x(M_\varepsilon)} & \leq C.
\end{align*}
\]

(7)

- Thus, we have the correct \(L^2 \) estimates for the solution and its time-derivative. Also gradient estimate in the stiff part.
Apriori Estimates

- The above proposition will give us the following estimates

Proposition

There exists a constant $C > 0$ independent of ε such that

\[
\begin{align*}
\|u_\varepsilon\|_{L_t^\infty L_x^2} &\leq C, \\
\|u'_\varepsilon\|_{L_t^\infty L_x^2} &\leq C, \\
\|\alpha_\varepsilon \nabla u_\varepsilon\|_{L_t^\infty L_x^2(B_\varepsilon)} &\leq C, \\
\|\nabla u_\varepsilon\|_{L_t^\infty L_x^2(M_\varepsilon)} &\leq C.
\end{align*}
\]

(7)

- Thus, we have the correct L^2 estimates for the solution and its time-derivative. Also gradient estimate in the stiff part.
- The difficulty in this problem: The gradient estimate in the soft inclusions is of order ε^{-1} and hence, in general H^1 estimate is of order ε^{-1}.
Apriori Estimates

- The above proposition will give us the following estimates

Proposition

There exists a constant $C > 0$ independent of ε such that

$$
\begin{align*}
\| u_\varepsilon \|_{L^\infty_t L_x^2} & \leq C, & \| u'_\varepsilon \|_{L^\infty_t L_x^2} & \leq C, \\
\| \alpha_\varepsilon \nabla u_\varepsilon \|_{L^\infty_t L_x^2(B_\varepsilon)} & \leq C, & \| \nabla u_\varepsilon \|_{L^\infty_t L_x^2(M_\varepsilon)} & \leq C.
\end{align*}
$$

Thus, we have the correct L^2 estimates for the solution and its time-derivative. Also gradient estimate in the stiff part.

- The difficulty in this problem: The gradient estimate in the soft inclusions is of order ε^{-1} and hence, in general H^1 estimate is of order ε^{-1}.

- This also motivates the assumption (A1) on the initial data.
Extension Operators

- We use the idea from perforated domains, where one extends the solution from the domain part to the perforations via linear operators.
Extension Operators

- We use the idea from perforated domains, where one extends the solution from the domain part to the perforations via linear operators.

- Thus idea is to restrict the solution to the **stiff part** of the domain and treating the **soft part** as perforations, extend the solution in a bounded way. This is done using the Extension Lemma.
Extension Operators

- We use the idea from perforated domains, where one extends the solution from the domain part to the perforations via linear operators.

- Thus idea is to restrict the solution to the **stiff part** of the domain and treating the **soft part** as perforations, extend the solution in a bounded way. This is done using the Extension Lemma.

- Then study the convergence of the actual solution and the extended function using two-scale convergence and connect them.
Extension Lemma

Lemma (Cioranescu-Donato)

There exists a linear continuous operator $P^\varepsilon \in \mathcal{L}(L^\infty(0,T;H^k(M_\varepsilon)); L^\infty(0,T;H^k(\Omega)))$, $k = 0, 1$ such that, for some constant C independent of ε: for any $\phi \in L^\infty(0,T;H^k(M_\varepsilon))$;

\[
\begin{align*}
P^\varepsilon \phi &= \phi \quad \text{in} \quad M_\varepsilon \times (0,T) \\
P^\varepsilon \phi' &= (P^\varepsilon \phi)' \quad \text{in} \quad \Omega \times (0,T) \\
\|P^\varepsilon \phi\|_{L^\infty(0,T;L^2(\Omega))} &\leq C \|\phi\|_{L^\infty(0,T;L^2(M_\varepsilon))} \\
\|P^\varepsilon \phi'\|_{L^\infty(0,T;L^2(\Omega))} &\leq C \|\phi'\|_{L^\infty(0,T;L^2(M_\varepsilon))} \\
\|\nabla(P^\varepsilon \phi)\|_{L^\infty(0,T;L^2(\Omega))} &\leq C \|\nabla \phi\|_{L^\infty(0,T;L^2(M_\varepsilon))}
\end{align*}
\]
Estimate and Convergence on extended functions

Let \tilde{u}_ε be the extension of u_ε restricted to M_ε, that is $\tilde{u}_\varepsilon = P_\varepsilon(u_\varepsilon|_{M_\varepsilon})$. Then

$$\|\tilde{u}_\varepsilon\|_{L_\infty H^1_0(\Omega)} \leq C, \quad \|\tilde{u}'_\varepsilon\|_{L_\infty L^2_x(\Omega)} \leq C$$

(8)
Let \(\tilde{u}_\varepsilon \) be the extension of \(u_\varepsilon \) restricted to \(M_\varepsilon \), that is \(\tilde{u}_\varepsilon = P^\varepsilon(u_\varepsilon|M_\varepsilon) \). Then

\[
\| \tilde{u}_\varepsilon \|_{L^\infty_t H^1_0(\Omega)} \leq C, \quad \| \tilde{u}'_\varepsilon \|_{L^\infty_t L^2_x(\Omega)} \leq C
\]

\[=\]

\[
\tilde{u}_\varepsilon \rightharpoonup \tilde{u} \text{ weak* in } L^\infty_t H^1_0(\Omega) \\
\tilde{u}'_\varepsilon \rightharpoonup \tilde{u}' \text{ weak* in } L^\infty_t L^2_x(\Omega)
\]
Let \tilde{u}_ε be the extension of u_ε restricted to M_ε, that is $\tilde{u}_\varepsilon = P^\varepsilon(u_\varepsilon|_{M_\varepsilon})$. Then

$$
\|\tilde{u}_\varepsilon\|_{L^\infty_t H^1_0(\Omega)} \leq C, \quad \|\tilde{u}'_\varepsilon\|_{L^\infty_t L^2_x(\Omega)} \leq C
$$

(8)

$$
\Rightarrow
$$

$$
\tilde{u}_\varepsilon \rightharpoonup \tilde{u} \text{ weak* in } L^\infty_t H^1_0(\Omega)
$$

$$
\tilde{u}'_\varepsilon \rightharpoonup \tilde{u}' \text{ weak* in } L^\infty_t L^2_x(\Omega)
$$

(9)

$$
\Rightarrow
$$

$$
\tilde{u}_\varepsilon \to \tilde{u} \text{ strongly in } L^2(\Omega_T) \text{ and } C([0, T], L^2(\Omega))
$$

(10)
Further Analysis on u_ε

- We assume that $\alpha_\varepsilon = O(\varepsilon)$, i.e., $\frac{\alpha_\varepsilon}{\varepsilon} \to \alpha \in (0, \infty)$
Further Analysis on u_ε

- We assume that $\alpha_\varepsilon = O(\varepsilon)$, i.e., $\frac{\alpha_\varepsilon}{\varepsilon} \to \alpha \in (0, \infty)$

- Since u_ε, $\varepsilon \nabla u_\varepsilon$ are bounded in $L^2(\Omega_T)$, we apply two-scale convergence to get $v_0 = v_0(t, x, y) \in L^2(\Omega_T; H^{1\#}_1(Y))$ such that

$$
\begin{align*}
&u_\varepsilon \rightharpoonup_{2-s} v_0 \text{ in } L^2(\Omega_T) \\
&\varepsilon \nabla u_\varepsilon \rightharpoonup_{2-s} \nabla_y v_0 \text{ in } L^2(\Omega_T) \\
&w'_\varepsilon \rightharpoonup_{2-s} v'_0 \text{ in } L^2(\Omega_T)
\end{align*}
$$

(11)
Further Analysis on u_ε; Conti...

- Let u is the weak limit of u_ε in $L^2(\Omega_T)$, then
Further Analysis on u_ε; Conti...

- Let u is the weak limit of u_ε in $L^2(\Omega_T)$, then

$$u = \int v_0(t,x,y)dy.$$
Further Analysis on u_ε; Conti...

- Let u is the weak limit of u_ε in $L^2(\Omega_T)$, then

$$u = \int v_0(t, x, y) dy.$$

The difficulty is that we do not have convergence in H^1.

Thus $v_0(t, x, y)$ is constant in y variable in $\Omega \times Y$. In fact, using the identity and 2-scale convergence, we get $v_0(t, x, y) = \tilde{u}(t, x)$ in $\Omega \times M$. For $(t, x, y) \in \Omega_T \times Y$, define $v(t, x, y) := v_0(t, x, y) - \tilde{u}(t, x)$. Thus v vanishes outside B.

Composite Structure: Homogenization
Cebu, Phillipines: January 15, 2016
A.K.N/IISc
Further Analysis on u_ε; Conti...

• Let u is the weak limit of u_ε in $L^2(\Omega_T)$, then

$$u = \int v_0(t, x, y)dy.$$

The difficulty is that we do not have convergence in H^1.

• But ∇u_ε is bounded in $L^2(M_\varepsilon)$, we have $\nabla u_\varepsilon \chi_{M_\varepsilon}$ bounded in $L^2(\Omega_T)$, by suitably applying 2-scale convergence, we have

$$\nabla_y v_0(t, x, y) = 0 \text{ in } \Omega \times M \text{ a.e.}$$
Further Analysis on \(u_\varepsilon \); Conti...

- Let \(u \) is the weak limit of \(u_\varepsilon \) in \(L^2(\Omega_T) \), then
 \[
 u = \int v_0(t, x, y)dy.
 \]

The difficulty is that we do not have convergence in \(H^1 \).

- But \(\nabla u_\varepsilon \) is bounded in \(L^2(M_\varepsilon) \), we have \(\nabla u_\varepsilon \chi_{M_\varepsilon} \) bounded in \(L^2(\Omega_T) \), by suitably applying 2-scale convergence, we have
 \[
 \nabla_y v_0(t, x, y) = 0 \text{ in } \Omega \times M \text{ a.e.}
 \]

- Thus \(v_0(t, x, y) \) is constant in \(y \) variable in \(\Omega \times M \). In fact, using the identity and 2-scale convergence, we get \(v_0(t, x, y) = \tilde{u}(t, x) \) in \(\Omega \times M \).
Further Analysis on u_ε; Conti...

- Let u is the weak limit of u_ε in $L^2(\Omega_T)$, then
 \[u = \int v_0(t, x, y) dy. \]

The difficulty is that we do not have convergence in H^1.

- But ∇u_ε is bounded in $L^2(M_\varepsilon)$, we have $\nabla u_\varepsilon \chi_{M_\varepsilon}$ bounded in $L^2(\Omega_T)$, by suitably applying 2-scale convergence, we have
 \[\nabla_y v_0(t, x, y) = 0 \text{ in } \Omega \times M \text{ a.e.} \]

- Thus $v_0(t, x, y)$ is constant in y variable in $\Omega \times M$. In fact, using the identity and 2-scale convergence, we get $v_0(t, x, y) = \tilde{u}(t, x)$ in $\Omega \times M$.

- For $(t, x, y) \in \Omega_T \times Y$, define
 \[v(t, x, y) := v_0(t, x, y) - \tilde{u}(t, x). \]

Thus v vanishes outside B.
Further Analysis on u_ϵ; Conti...

We get the following regularity results:

\[u \in L^\infty(0, T; L^2(\Omega; H^1_0(B))) \quad \text{and} \quad u' \in L^\infty(0, T; L^2(\Omega; L^2(B))) \]

\[\tilde{u} \in L^\infty_t H^1_0(\Omega), \quad \tilde{u}' \in L^\infty_t (L^2(\Omega)). \]
Further Analysis on u_ε; Conti...

We get the following regularity results:

$$v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))) \text{ and } v' \in L^\infty(0, T; L^2(\Omega; L^2(B)))$$

$$\tilde{u} \in L^\infty_t H^1_0(\Omega), \quad \tilde{u}' \in L^\infty_t (L^2(\Omega)).$$

$$u_\varepsilon \rightharpoonup \frac{2s}{\varepsilon} v_0(t, x, y) = \tilde{u}(t, x) + v(t, x, y).$$
Further Analysis on u_ε; Conti...

We get the following regularity results:

\[v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))) \quad \text{and} \quad v' \in L^\infty(0, T; L^2(\Omega; L^2(B))) \]

\[\tilde{u} \in L^\infty_t H^1_0(\Omega), \quad \tilde{u}' \in L^\infty_t (L^2(\Omega)). \]

\[u_\varepsilon \twoheadrightarrow v_0(t, x, y) = \tilde{u}(t, x) + v(t, x, y). \]

- The aim, indeed, is to identify v_0 which is the two-scale limit of our original problem.
Further Analysis on u_ε; Conti...

We get the following regularity results:

$$v \in L^\infty(0,T; L^2(\Omega; H^1_0(B))) \text{ and } v' \in L^\infty(0,T; L^2(\Omega; L^2(B)))$$

\[\tilde{u} \in L^\infty_t H^1_0(\Omega), \quad \tilde{u}' \in L^\infty_t (L^2(\Omega)). \]

\[u_\varepsilon \overset{2s}{\rightharpoonup} v_0(t, x, y) = \tilde{u}(t, x) + v(t, x, y). \]

- The aim, indeed, is to identify v_0 which is the two-scale limit of our original problem.

- The difficulty is that, in general, we will not have regularity for v_0 with respect to the spatial variable x. Indeed, we do get regularity with respect to the fast variable y. On the other hand, \tilde{u}, the limit of the extended function has H^1 regularity with respect to x.
For the two-scale limit v_0 of the given problem, we have the representation

$$v_0(t, x, y) = \tilde{u}(t, x) + v(t, x, y),$$

where

$$\tilde{u} \in L^2(0, T; H^1_0(\Omega)), \quad v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))).$$
Consolidation of all the Discussion

- For the two-scale limit v_0 of the given problem, we have the representation
 \[v_0(t, x, y) = \tilde{u}(t, x) + v(t, x, y), \]
 where
 \[\tilde{u} \in L^2(0, T; H^1_0(\Omega)), \quad v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))). \]

- Here \tilde{u} is the limit of extended function in $L^\infty(0, T; H^1_0(\Omega))$.
Consolidation of all the Discussion

• For the two-scale limit \(v_0 \) of the given problem, we have the representation

\[
v_0(t, x, y) = \tilde{u}(t, x) + v(t, x, y),
\]

where

\[
\tilde{u} \in L^2(0, T; H^1_0(\Omega)), \quad v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))).
\]

• Here \(\tilde{u} \) is the limit of extended function in \(L^\infty(0, T; H^1_0(\Omega)) \).

• First, we will look for a solution in the above form which satisfies a weak formulation.
Limit of $\nabla u_\varepsilon \chi_{M_\varepsilon}$ and $\varepsilon \nabla u_\varepsilon \chi_{B_\varepsilon}$

- Clearly $\varepsilon \chi_{B_\varepsilon} \nabla u_\varepsilon \xrightarrow{2s} \chi_B(y) \nabla_y v$.
Limit of $\nabla u_\varepsilon \chi_{M_\varepsilon}$ and $\varepsilon \nabla u_\varepsilon \chi_{B_\varepsilon}$

- Clearly $\varepsilon \chi_{B_\varepsilon} \nabla u_\varepsilon \rightharpoonup^{2s} \chi_B(y) \nabla_y v$.

- We do more analysis on the additional information that ∇u_ε is bounded in the stiff part of the material, that is $\nabla u_\varepsilon \chi_{M_\varepsilon}$ is bounded in $L^2(\Omega_T)$.
Limit of $\nabla u_\varepsilon \chi_{M_\varepsilon}$ and $\varepsilon \nabla u_\varepsilon \chi_{B_\varepsilon}$

- Clearly $\varepsilon \chi_{B_\varepsilon} \nabla u_\varepsilon \overset{2s}{\rightharpoonup} \chi_B(y) \nabla_y v$.

- We do more analysis on the additional information that ∇u_ε is bounded in the stiff part of the material, that is $\nabla u_\varepsilon \chi_{M_\varepsilon}$ is bounded in $L^2(\Omega_T)$.

- Let $\nabla u_\varepsilon \chi_{M_\varepsilon} \rightharpoonup K(t, x, y)$ in $L^2(\Omega_T)$. Then, we have

Proposition

There exists $u_1(t, x, y) \in L^2(\Omega_T; H^1_\#(M))$ such that

$$[K(t, x, y) - \nabla_x \tilde{u}(t, x)] \chi_M(y) = \nabla_y u_1(t, x, y) \chi_M(y)$$

Further, u_1 vanishes outside M satisfies

$$u_1 \in L^\infty(0, T; L^2(\Omega; H^1_0(M))).$$
• Thus, with respect to the fast variable y, v vanishes outside soft part B and u_1 vanishes outside the stiff part M taking care of the two features.
Remarks

- Thus, with respect to the fast variable y, v vanishes outside soft part B and u_1 vanishes outside the stiff part M taking care of the two features.

- We now state a weak formulation for the unknowns \tilde{u}, v and u_1.

Remarks

• Thus, with respect to the fast variable y, v vanishes outside soft part B and u_1 vanishes outside the stiff part M taking care of the two features.

• We now state a weak formulation for the unknowns \tilde{u}, v and u_1.

• We then represent u_1 in terms of \tilde{u} leading to a two-scale homogenized system for \tilde{u} and v.
Remarks

• Thus, with respect to the fast variable y, v vanishes outside soft part B and u_1 vanishes outside the stiff part M taking care of the two features.

• We now state a weak formulation for the unknowns \tilde{u}, v and u_1.

• We then represent u_1 in terms of \tilde{u} leading to a two-scale homogenized system for \tilde{u} and v.

• We also derive appropriate initial conditions so that the two-scale system is well-posed.
Remarks

• Thus, with respect to the fast variable y, v vanishes outside soft part B and u_1 vanishes outside the stiff part M taking care of the two features.

• We now state a weak formulation for the unknowns \tilde{u}, v and u_1.

• We then represent u_1 in terms of \tilde{u} leading to a two-scale homogenized system for \tilde{u} and v.

• We also derive appropriate initial conditions so that the two-scale system is well-posed.

• Deriving a one-scale system (homogenized) remains open, probably, it is not possible, whereas such a decomposition is possible in an elliptic system.
2-scale system for \tilde{u}, v and u_1.

Find \tilde{u}, v and u_1 in appropriate spaces such that

\[
\int_{\Omega_T} \int_Y (\tilde{u} + v) (\bar{u} + \bar{v})'' + \int_{\Omega_T} \int_Y (\tilde{u} + v) (\bar{u} + \bar{v})
\]
\[
+ \int_{\Omega_T} \int_B A(x, y) \nabla_y v \cdot \nabla_y \bar{v}
\]
\[
+ \int_{\Omega_T} \int_M A(x, y)(\nabla_x \tilde{u} + \nabla_y u_1)(\nabla_x \bar{u} + \nabla_y \bar{u}_1)
\]
\[
= \int_{\Omega_T} f \bar{u} + \int_{\Omega_T} \int_Y \tilde{f} \bar{v}
\]

for the appropriate test functions \bar{u}, \bar{v} and \bar{u}_1. Here f and \tilde{f} are, respectively, the L^2 weak-limit and two-scale limit of the data f_ε.
Representation of u_1

Proposition

The solution u_1 can be given in terms of \tilde{u} and solutions to cell problem as

$$u_1(t, x, y) = \sum \frac{\partial \tilde{u}}{\partial x_i} w_i(x, y),$$

where w_i satisfies for a.e. $x \in \Omega$:

\[
\begin{align*}
\quad -\text{div}_y (A(x, y)(\nabla_y w_i(x, \cdot) + e_i)) &= 0 \quad \text{in} \quad M \\
\quad w_i(x, \cdot) &\in H^1_0(M)
\end{align*}
\]

Here $\{e_i, 1 \leq i \leq n\}$ is the canonical basis of \mathbb{R}^n.
Representation of u_1

Proposition

The solution u_1 can be given in terms of \tilde{u} and solutions to cell problem as

$$u_1(t, x, y) = \sum \frac{\partial \tilde{u}}{\partial x_i} w_i(x, y),$$

where w_i satisfies for a.e. $x \in \Omega$:

$$\begin{cases}
- \mathrm{div}_y (A(x, y)(\nabla_y w_i(x, \cdot) + e_i)) = 0 \text{ in } M \\
 w_i(x, \cdot) \in H^1_{0#}(M)
\end{cases}$$

Here $\{e_i, 1 \leq i \leq n\}$ is the canonical basis of \mathbb{R}^n.

Introducing the homogenized matrix

$$A^*(x) = \int_M A(x, y)(\nabla_y w_j + e_j)(\nabla_y w_i + e_i) dy,$$

we may eliminate u_1.
2-scale system in terms of \tilde{u} and v.

Theorem

The limits \tilde{u} and v satisfies

$$\tilde{u} \in L^\infty(0, T; H^1_0(\Omega)), \ 	ilde{u}' \in L^\infty(0, T; L^2(\Omega)),
$$

$$v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))), \ v' \in L^\infty(0, T; L^2(\Omega; L^2(B))),$$

and

$$\int_{\Omega_T} \int_Y (\tilde{u} + v) (\tilde{u} + \bar{v})'' + \int_{\Omega_T} \int_Y (\tilde{u} + v) (\tilde{u} + \bar{v})$$

$$+ \int_{\Omega_T} \int_B A(x, y) \nabla_y v \cdot \nabla_y \bar{v} + \int_{\Omega_T} A^*(x) \nabla \tilde{u} \cdot \nabla \bar{u}$$

$$= \int_{\Omega_T} f \tilde{u} + \int_{\Omega_T} \int_Y \bar{f} \bar{v} \quad (12)$$

for all smooth functions \bar{u}, \bar{v}.
Two-scale Homogenized System (Strong Form)

Find \(\tilde{u} \in L^\infty(0, T; H^1_0(\Omega)) \), \(v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))) \) s.t.

\[
(\tilde{u} + v)'' + (\tilde{u} + v) - \text{div}_y(\chi_B A(x, y) \nabla_y v) - \text{div}_x(A^*(x) \nabla \tilde{u}) = f + \bar{f}
\]

\[\tilde{u}(0, x) = \int_M u^0(x, y) \, dy \quad \tilde{u}'(0, x) = \int_M u^1(x, y) \, dy \quad \text{in } \Omega,\]

\[v(0, x, y) = u^0(x, y) - \int_M u^0(x, y) \, dy\]

\[v'(0, x, y) = u^1(x, y) - \int_M u^1(x, y) \, dy\]
Two-scale Homogenized System (Strong Form)

Find $\tilde{u} \in L^\infty(0, T; H^1_0(\Omega))$, $v \in L^\infty(0, T; L^2(\Omega; H^1_0(B)))$ s.t.

$$(\tilde{u} + v)'' + (\tilde{u} + v) - \text{div}_y(\chi_B A(x, y) \nabla_y v) - \text{div}_x(A^*(x) \nabla \tilde{u}) = f + \bar{f}$$

$$\tilde{u}(0, x) = \int_M u^0(x, y) \, dy \quad \tilde{u}'(0, x) = \int_M u^1(x, y) \, dy \quad \text{in } \Omega,$$

$$v(0, x, y) = u^0(x, y) - \int_M u^0(x, y) \, dy$$

$$v'(0, x, y) = u^1(x, y) - \int_M u^1(x, y) \, dy$$

- Need to interpret the meaning of $\tilde{u}(0)$, $v(0)$ and $\tilde{u}'(0)$, $v'(0)$ and
Two-scale Homogenized System (Strong Form)

Find \(\tilde{u} \in L^\infty(0, T; H^1_0(\Omega)) \), \(v \in L^\infty(0, T; L^2(\Omega; H^1_0(B))) \) s.t.

\[
(\tilde{u} + v)'' + (\tilde{u} + v) - \text{div}_y(\chi_B A(x, y) \nabla_y v) - \text{div}_x(A^*(x) \nabla \tilde{u}) = f + \bar{f}
\]

\[
\tilde{u}(0, x) = \int_M u^0(x, y) \, dy \quad \tilde{u}'(0, x) = \int_M u^1(x, y) \, dy \quad \text{in } \Omega,
\]

\[
v(0, x, y) = u^0(x, y) - \int_M u^0(x, y) \, dy
\]

\[
v'(0, x, y) = u^1(x, y) - \int_M u^1(x, y) \, dy
\]

- Need to interpret the meaning of \(\tilde{u}(0) \), \(v(0) \) and \(\tilde{u}'(0) \), \(v'(0) \) and then, identify them.
Meaning of Initial Values

- Meaning to $v_0(0) = (\tilde{u} + v)(0)$, $v_0'(0) = (\tilde{u} + v)'(0)$
Meaning of Initial Values

- Meaning to $v_0(0) = (\tilde{u} + v)(0)$, $v'_0(0) = (\tilde{u} + v)'(0)$
- This can be interpreted properly using the facts

$$\tilde{u} \in L^\infty_t H^1_0(\Omega), \tilde{u}' \in L^\infty_t L^2(\Omega), \tilde{u}'' \in L^\infty_t H^{-1}(\Omega)$$

and
Meaning of Initial Values

- Meaning to $v_0(0) = (\tilde{u} + v)(0)$, $v'_0(0) = (\tilde{u} + v)'(0)$
- This can be interpreted properly using the facts

$$\tilde{u} \in L_t^\infty H^1_0(\Omega), \tilde{u}' \in L^\infty L^2(\Omega), \tilde{u}'' \in L^\infty H^{-1}(\Omega)$$

and

$$v \in L_t^\infty L_x^2 H^1_y, v' \in L_t^\infty L_x^2 L_y^2, v'' \in L^\infty H^{-1}(\Omega \times Y).$$
Meaning of Initial Values

• Meaning to \(v_0(0) = (\tilde{u} + v)(0), \ v_0'(0) = (\tilde{u} + v)'(0) \)

• This can be interpreted properly using the facts

\[
\tilde{u} \in L^\infty_t H^1_0(\Omega), \ \tilde{u}' \in L^\infty_t L^2(\Omega), \ \tilde{u}'' \in L^\infty_t H^{-1}(\Omega)
\]

and

\[
v \in L^\infty_t L^2_x H^1_y, \ v' \in L^\infty_t L^2_x L^2_y, \ v'' \in L^\infty_t H^{-1}(\Omega \times Y).
\]

• The above regularity implies that \(\tilde{u}, v \in C([0, T], L^2(\Omega \times Y)) \) and \(\tilde{u}', v' \in C([0, T], H^{-1}(\Omega \times Y)) \) and hence

\[
\tilde{u}(0), v(0) \in L^2(\Omega \times Y), \ \tilde{u}'(0), v'(0) \in H^{-1}(\Omega \times Y)
\]
Identification of Initial Conditions

- Using the boundedness of the initial conditions u_ε^0 and u_ε^1, let

 $u_\varepsilon^0 \xrightarrow{2-s} u^0(x, y), \quad u_\varepsilon^1 \xrightarrow{2-s} u^1(x, y)$.

- Using the strong convergence of the extension \tilde{u}_ε, it is easy to find the initial condition for \tilde{u}.

- However, more work to be done to identify the limit for $v(0), v'(0)$.
Identification of Initial Conditions

• Using the boundedness of the initial conditions \(u_\varepsilon^0 \) and \(u_\varepsilon^1 \), let

\[
\begin{align*}
 u_\varepsilon^0 & \xrightarrow{2-s} u^0(x, y), \\
 u_\varepsilon^1 & \xrightarrow{2-s} u^1(x, y).
\end{align*}
\]

• Using the strong convergence of the extension \(\tilde{u}_\varepsilon \), the it is easy to find the initial condition for \(\tilde{u}, \tilde{u}'(0) \).
Identification of Initial Conditions

• Using the boundedness of the initial conditions u^0_ε and u^1_ε, let

$$u^0_\varepsilon \xrightarrow{2-s} u^0(x, y), \quad u^1_\varepsilon \xrightarrow{2-s} u^1(x, y).$$

• Using the strong convergence of the extension \tilde{u}_ε, the it is easy to find the initial condition for $\tilde{u}, \tilde{u}'(0)$.

• However, more work to be done to identify the limit for $v(0), v'(0)$.
Existence

• The above equation defines a hyperbolic system with appropriate elliptic part. Let \(X = H^1_0(\Omega) \), \(Z = L^2(\Omega; H^1_0(B)) \). We have \((\tilde{u}, v) \in L^\infty(0, T; X) \times L^\infty(0, T; Z)\).
Existence

• The above equation defines a hyperbolic system with appropriate elliptic part. Let $X = H^1_0(\Omega)$, $Z = L^2(\Omega; H^1_0(B))$. We have $(\tilde{u}, v) \in L^{\infty}(0, T; X) \times L^{\infty}(0, T; Z)$

• **Elliptic bilinear form:** Let $A : X \times Z \to \mathbb{R}$, $U = (u, v) \in X \times Z$ defined by

$$A(U_1, U_2) = \int_{\Omega} u_1 u_1 + \int_{\Omega \times B} v_1 v_1 + \int_{\Omega} A^*(x) \nabla u_1 \cdot \nabla u_2$$

$$+ \int_{\Omega \times B} A(x, y) \nabla_y v_1 \cdot \nabla_y v_2$$
• The norm $\|U\|_{X \times Z}^2 = \|u\|_{H^1_0(\Omega)}^2 + \|\nabla_y v\|_{L^2(\Omega \times B)}^2 + \|v\|_{L^2(\Omega \times B)}^2$ is equivalent to $\|\nabla u\|_{L^2(\Omega)}^2 + \|\nabla_y v\|_{L^2(\Omega \times B)}^2$.
The norm $\|U\|_{X \times Z}^2 = \|u\|_{H^1_0(\Omega)}^2 + \|\nabla_y v\|_{L^2(\Omega \times B)}^2 + \|v\|_{L^2(\Omega \times B)}^2$ is equivalent to $\|\nabla u\|_{L^2(\Omega)}^2 + \|\nabla_y v\|_{L^2(\Omega \times B)}^2$.

Clearly A is continuous and

$$A(U, U) = \int_{\Omega} |u_1|^2 + \int_{\Omega \times B} |v_1|^2$$

$$+ \int_{\Omega} A^*(x) \nabla u \cdot \nabla u + \int_{\Omega \times B} A(x, y) \nabla_y v \cdot \nabla_y v$$

$$\geq C \left[\int_{\Omega} |\nabla u|^2 + \int_{\Omega} |\nabla_y v|^2 \right] \geq C_1 \|U\|_{X \times Z}^2$$

The existence of the Hyperbolic system could be worked out.
The norm $\|U\|_{X \times Z}^2 = \|u\|_{H_0^1(\Omega)}^2 + \|\nabla_y v\|_{L^2(\Omega \times B)}^2 + \|v\|_{L^2(\Omega \times B)}^2$ is equivalent to $\|\nabla u\|_{L^2(\Omega)}^2 + \|\nabla_y v\|_{L^2(\Omega \times B)}^2$.

Clearly A is continuous and

$$A(U, U) = \int_{\Omega} |u_1|^2 + \int_{\Omega \times B} |v_1|^2$$

$$+ \int_{\Omega} A^*(x) \nabla u \cdot \nabla u + \int_{\Omega \times B} A(x, y) \nabla_y v \cdot \nabla_y v$$

$$\geq C \left[\int_{\Omega} |\nabla u|^2 + \int_{\Omega} |\nabla_y v|^2 \right] \geq C_1 \|U\|_{X \times Z}^2$$

The existence of the Hyperbolic system could be worked out.
Remarks

• We do not know how to separate \tilde{u} and v so that we have a complete homogenized equation for the macro variable alone, probably it may not be possible.
Remarks

- We do not know how to separate \tilde{u} and v so that we have a complete homogenized equation for the macro variable alone, probably it may not be possible.

- However, using the unique existence of $\tilde{u} + v$, we have a representation of $\tilde{u} + v = \hat{u}(t, x) + \hat{v}(t, x, y)$, where \hat{u} and \hat{v} are solved separately.
Remarks

- We do not know how to separate \tilde{u} and v so that we have a complete homogenized equation for the macro variable alone, probably it may not be possible.

- However, using the unique existence of $\tilde{u} + v$, we have a representation of $\tilde{u} + v = \hat{u}(t, x) + \hat{v}(t, x, y)$, where \hat{u} and \hat{v} are solved separately.

- A complete decoupling is possible in an elliptic system.
Decoupling in elliptic Problem

The elliptic two scale system is given by

\[
\int_{\Omega} \int_{\mathcal{Y}} (\tilde{u} + v) (\bar{u} + \bar{v}) + \int_{\Omega} \int_{\mathcal{B}} A(x, y) \nabla_y v \cdot \nabla_y \bar{u} \\
+ \int_{\Omega} A^*(x) \nabla \tilde{u} \cdot \nabla \bar{u} = \int_{\Omega} f \bar{u}
\]

(13)
Decoupling in elliptic Problem

The elliptic two scale system is given by

\[
\int_{\Omega} \int_{Y} (\tilde{u} + v) (\bar{u} + \bar{v}) + \int_{\Omega} \int_{B} A(x, y) \nabla_y v \cdot \nabla_y \bar{v} + \int_{\Omega} \int_{B} A^*(x) \nabla \hat{u} \cdot \nabla \bar{u} = \int_{\Omega} f \bar{u}
\]

(13)

Introduce, \(\hat{v}(x, y) \in L^\infty(\Omega \times B) \) as the solution to the cell problem for a.e. \(x \in \Omega; \)

\[
\hat{v}(x, \cdot) - \text{div}_y A(x, \cdot) \nabla u \hat{v}(x, \cdot) = 1 \quad \text{in B}
\]
Decoupling in elliptic Problem

The elliptic two scale system is given by

\[
\int_{\Omega} \int_{Y} (\tilde{u} + v)(\bar{u} + \bar{v}) + \int_{\Omega} \int_{B} A(x, y) \nabla_y v \cdot \nabla_y \bar{v} + \int_{\Omega} A^*(x) \nabla \tilde{u} \cdot \nabla \tilde{u} = \int_{\Omega} f \bar{u}
\]

(13)

Introduce, \(\hat{v}(x, y) \in L^\infty(\Omega \times B) \) as the solution to the cell problem for a.e. \(x \in \Omega; \)

\[
\hat{v}(x, \cdot) - \text{div}_y A(x, \cdot) \nabla u \hat{v}(x, \cdot) = 1 \quad \text{in} \quad B
\]

Then, \(v \) is given by \(v(x, y) = (f(x) - \tilde{u}(x))\hat{v}(x, y) \) and \(\tilde{u} \) satisfies the homogenized equation; \(\tilde{u} \in H^1_0(\Omega) \)

\[
m(x) u(x) - \text{div} A^*(x) \nabla u(x) = m(x) f(x) \quad \text{in} \quad \Omega,
\]

where \(m(x) = \int_{B} \hat{v}(x, y) dy. \)
Decoupling in Hyperbolic System Problem

Introduce $\hat{u}(t, x), \hat{v}(t, x, y)$ as follows:

\[
\begin{cases}
\text{Find } \hat{u} \in L^\infty(0, T; H^1_0(\Omega)), \hat{u}' \in L^\infty(0, T; L^2(\Omega)) \text{ satisfying} \\
\hat{u}'' + \hat{u} - \text{div}_x (A^*(x)\nabla \hat{u}) = f \text{ in } \Omega_T \\
\hat{u}(0) = 0 = \hat{u}'(0).
\end{cases}
\tag{14}
\]
Decoupling in Hyperbolic System Problem

Introduce $\hat{u}(t, x)$, $\hat{v}(t, x, y)$ as follows:

Find $\hat{u} \in L^\infty(0, T; H_0^1(\Omega))$, $\hat{u}' \in L^\infty(0, T; L^2(\Omega))$ satisfying

$$\hat{u}'' + \hat{u} - \text{div}_x (A^*(x) \nabla \hat{u}) = f \text{ in } \Omega_T$$

$$\hat{u}(0) = 0 = \hat{u}'(0).$$

(14)

and with $x \in \Omega$ as parameter

Find $\hat{v} \in L^\infty(0, T; H_0^1(B))$, $\hat{v}' \in L^\infty(0, T; L^2(B))$ satisfying

$$\hat{v}'' + \hat{v} - \text{div}_y (A(x, y) \nabla_y \hat{v}) = f \text{ in } (0, T) \times B$$

$$\hat{v}(0, x, y) = u^{00}(x, y)$$

$$\hat{v}'(0, x, y) = u^{11}(x, y).$$

(15)
Decoupling in Hyperbolic System Problem

• Indeed $\hat{u} + \hat{v}$ satisfies the two-scale system. By uniqueness, the two-scale limit of the inhomogenized equation is given by

$$v_0 = \tilde{u} + v = \hat{u} + \hat{v},$$

where \hat{u}, \hat{v} are given as in (14) and (15) respectively.
Decoupling in Hyperbolic System Problem

• Indeed $\hat{u} + \hat{v}$ satisfies the two-scale system. By uniqueness, the two-scale limit of the inhomogenized equation is given by

$$v_0 = \tilde{u} + v = \hat{u} + \hat{v}, \quad (16)$$

where \hat{u}, \hat{v} are given as in (14) and (15) respectively.

• Though, we have a complete representation of the weak limit via \hat{u} and \hat{v}, the equation (14) cannot be treated as a complete homogenized (one-scale) system as \hat{u} do not capture the initial values.
Main Theorem

Theorem (Homogenization)

Let the given data $f_\varepsilon, u_\varepsilon^0, u_\varepsilon^1, a_\varepsilon$ satisfy the assumptions be given. Let u_ε be the unique solution to the problem (P_ε). Then,

$$u_\varepsilon \xrightarrow{2s} \tilde{u}(t, x) + v(t, x, y),$$

where the pair $(\tilde{u}, v) \in L^\infty(0, T; H_0^1(\Omega)) \times L^2(\Omega_T; H_0^1(B))$ is the unique solution of the coupled system described earlier.
The other two regimes; \(\alpha := \lim_{\varepsilon \to 0} \frac{\alpha \varepsilon}{\varepsilon} = 0 \) or \(\alpha = +\infty \).

- The case \(\alpha = 0 \); Here the limit problem is

\[
(1 - |B|)(u'' + u) - \text{div}_x A^*(x) \nabla u = \int_M f_0 \, dy, \quad \text{in } \Omega_T,
\]

with the same initial conditions as earlier.
The other two regimes; \(\alpha := \lim_{\varepsilon \to 0} \frac{\alpha_{\varepsilon}}{\varepsilon} = 0 \) or \(\alpha = +\infty \).

- The case \(\alpha = 0 \); Here the limit problem is

\[
(1 - |B|)(u'' + u) - \text{div}_x A^*(x) \nabla u = \int_M f_0 \, dy, \quad \text{in } \Omega_T,
\]

with the same initial conditions as earlier.

- The contribution of the soft part \(B_{\varepsilon} \) in the homogenized equation is seen through the measure of \(B \) in the final macroscopic equation.
The case $\alpha = \infty$

- There is no contribution from the soft material. The homogenized equation is

$$u'' + u - \text{div}_x A^* (x) \nabla u = \int_Y f_0 \, dy, \quad \text{in } \Omega_T,$$

with the same initial conditions as in the critical case.

The case \(\alpha = \infty \)

- There is no contribution from the soft material. The homogenized equation is

\[
\frac{d^2 u}{dx^2} + u - \text{div}_x A^*(x) \nabla u = \int_Y f_0 \, dy, \quad \text{in } \Omega_T,
\]

with the same initial conditions as in the critical case.
The case $\alpha = \infty$

- There is no contribution from the soft material. The homogenized equation is

$$u'' + u - \text{div}_x A^*(x) \nabla u = \int_Y f_0 \, dy, \quad \text{in } \Omega_T,$$

with the same initial conditions as in the critical case.

Thank You!

Nandakumaran, IISc., Bangalore