1. Show that if p is an odd prime number then

$$
\left\{\left(\frac{p-1}{2}\right)!\right\}^{2} \equiv(-1)^{(p+1) / 2} \bmod p
$$

2. (a) Show that the following numbers are algebraic over \mathbb{Q}, determine the minimal polynomial of each number and find all of its conjugates over \mathbb{Q} :

$$
2-3 i ; \quad \sqrt{2+\sqrt{2}} ; \quad \frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2}
$$

(b) Which among the numbers given in (a) are algebraic integers?
3. Prove the following properties of norms: Let K be a number field and let $\alpha \in \mathcal{O}_{K}$.
(a) Prove that $\operatorname{Nm}(\alpha) \in \mathbb{Z}$.
(c) Prove that $\operatorname{Nm}(\alpha)= \pm 1$ if and only if α is a unit in \mathcal{O}_{K}.
(b) If $\operatorname{Nm}(\alpha)$ is a rational prime, then α is irreducible in \mathcal{O}_{K}.
4. Give an example of a Gaussian number $\gamma=a+b i$ such that $\operatorname{Nm}(\gamma)=1$ but γ is not an algebraic integer.
5. Compute the norm of a generic element $a+b \sqrt[3]{2}+c \sqrt[3]{4}$ in $\mathbb{Q}(\sqrt[3]{2})$. Show that it is in \mathbb{Q}.
6. In a number field K, show that if α and β are roots of a monic polynomial in $\mathbb{Z}[x]$ and $\alpha, \beta \in K$ then $\alpha+\beta$ and $\alpha \beta$ are also roots of a monic polynomial in $\mathbb{Z}[x]$. In other words, prove that the ring of integers is indeed a ring!
7. Let d be a squarefree integer. Prove that the ring of integers of $\mathbb{Q}(\sqrt{d})$ is

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{d}], & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

8. Show that the ring of algebraic integers of $\mathbb{Q}(\sqrt{10})$ is not a unique factorization domain.
9. For each of the following irreducible polynomials, let α be a root and $K=\mathbb{Q}(\alpha)$. Compute \mathcal{O}_{K} and factorizations of (2), (3), (5), (7) in \mathcal{O}_{K}.

$$
f(x)=x^{2}+31 ; \quad f(x)=x^{2}-29 ; \quad f(x)=x^{3}+x-1
$$

10. Decompose $33+11 \sqrt{-7}$ into irreducible integral elements of $\mathbb{Q}(\sqrt{-7})$.
11. Show that for any ideal I of $\mathcal{O}_{K}, \mathcal{O}_{K} / I$ is finite.
12. Show that $(2,1+\sqrt{-5})$ and $(2,1-\sqrt{-5})$ are the same ideal in $\mathbb{Z}[\sqrt{-5}]$.
13. Prove that every ideal of a Dedekind domain can be generated by two elements.
