PROBLEMS MODULAR FORMS CIMPA 2023

MAR CURCÓ IRANZO, LAURA GEATTI, VALENTIJN KAREMAKER

1. LIST 2

Problem 1. In this exercise you will work on the structure of the graded algebra of modular forms.
(a) Let $f \in M_{k}$ and $g \in M_{l}$. Show that $f \cdot g$ defines a modular form of weight $k+l$. Deduce that $M=\oplus_{k} M_{k}$ is a graded algebra.
(b) Show that the map $X \mapsto E_{4} ; Y \mapsto E_{6}$ defines an isomorphism between $\mathbb{C}[X, Y]$ and M. (So we will make the identification with the polynomial algebra in $E_{4}, E_{6}: M=\mathbb{C}\left[E_{4}, E_{6}\right]$.)

Problem 2. Spaces of modular forms.
(a) Show that $M_{14}=\mathbb{C} E_{14}, S_{14}=\{0\}$ and $E_{14}=E_{6} E_{8}=E_{6} E_{4}^{2}$. (Hint: for the cusp form spaces, use the isomorphism $f \mapsto \Delta f$ between the spaces M_{k} and S_{k+12}.)
(b) Recall the definition of Dedekind's eta function $\eta(z)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$. In Exercise 6(d) of the 1 st training session we saw that $\eta(z)^{24}$ is a modular form of weight 12. Use this fact to show that the modular discriminant $\Delta(z)$ and $\eta(z)^{24}$ are equal.

Problem 3. The goal of this exercise is to find an expression for the Fourier expansion of $G_{k}(z)$ in a different way that the one presented in the lectures.
(a) Show that

$$
\frac{\pi}{\tan (\pi z)}=-2 \pi i\left(\frac{1}{2}+\sum_{r=1}^{\infty} q^{r}\right)
$$

(Hint: use the complex exponential trigonometric identities to find the q-expansion of the function on the left hand side. Recall that $\frac{1}{q-1}=\sum_{r=0}^{\infty} q^{r}$.)
(b) Use Euler's identity $\pi \frac{\cos (\pi z)}{\sin (\pi z)}=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{z+n}\right)$ to show that

$$
\sum_{n=1}^{\infty} \frac{1}{(z+n)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{r=1}^{\infty} r^{k-1} q^{r}
$$

(Hint: consider the $(k-1)$ th-derivative of the formula obtained in (a)).
(c) Use the identity $\zeta(k)=-\frac{(2 \pi i)^{k} B_{k}}{2 \cdot k!}$ (see bonus problem 6) to show that

$$
G_{k}(z)=\frac{2 \pi i}{(k-1)!}\left(-\frac{B_{k}}{2 k}+\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}\right)
$$

$$
\begin{array}{cccc}
\mathrm{B}_{0}=1 & \mathrm{~B}_{6}=\frac{1}{42} & \mathrm{~B}_{12}=\frac{-691}{2730} & \mathrm{~B}_{18}=\frac{43867}{798} \\
\mathrm{~B}_{1}=\frac{-1}{2} & \mathrm{~B}_{7}=0 & \mathrm{~B}_{13}=0 & \mathrm{~B}_{19}=0 \\
\mathrm{~B}_{2}=\frac{1}{6} & \mathrm{~B}_{8}=\frac{-1}{30} & \mathrm{~B}_{14}=\frac{7}{6} & \mathrm{~B}_{20}=\frac{-174611}{330} \\
\mathrm{~B}_{3}=0 & \mathrm{~B}_{9}=0 & \mathrm{~B}_{15}=0 & \mathrm{~B}_{21}=0 \\
\mathrm{~B}_{4}=\frac{-1}{30} & \mathrm{~B}_{10}=\frac{-1}{30} & \mathrm{~B}_{16}=\frac{-3617}{510} & \mathrm{~B}_{22}=\frac{854513}{138} \\
\mathrm{~B}_{5}=0 & \mathrm{~B}_{11}=0 & \mathrm{~B}_{17}=0 & \mathrm{~B}_{23}=0
\end{array}
$$

Figure 1. The first Bernoulli numbers.
(Hint: split the expression of $G_{k}(z)$ into two sums, one with the terms $m=0$ and one with the terms $m \neq 0$.)

Problem 4. Let $n \in \mathbb{Z}, n>0$. Recall the q-expansion: $E_{k}(z)=1-\frac{2 k}{B_{k}} \sum_{n \geq 1} \sigma_{k-1}(n) q^{n}$.
(a) Use Figure 1 to verify that the q-expansion of E_{k} for $k \leq 14$ is the following:

$$
\begin{array}{rlrl}
E_{4}(z) & =1+240 \sum_{n \geq 1} \sigma_{3}(n) q^{n}, & E_{6}(z)=1-504 \sum_{n \geq 1} \sigma_{5}(n) q^{n}, \\
E_{8}(z) & =1+480 \sum_{n \geq 1} \sigma_{7}(n) q^{n}, & E_{10}(z)=1-264 \sum_{n \geq 1} \sigma_{9}(n) q^{n} \\
E_{12}(z) & =1+\frac{6520}{691} \sum_{n \geq 1} \sigma_{11}(n) q^{n}, & & E_{14}(z)=1-24 \sum_{n \geq 1} \sigma_{13}(n) q^{n} .
\end{array}
$$

(b) Prove that $\sigma_{7}(n) \equiv \sigma_{3}(n)(\bmod 120)$.
(c) Prove that $11 \sigma_{9}(n)=-10 \sigma_{3}(n)+21 \sigma_{5}(n)+5040 \sum_{j=1}^{n-1} \sigma_{3}(j) \sigma_{5}(n-j)$.
(d) Use the same techniques to find expressions for σ_{13} in terms of σ_{3} and σ_{9}, and in terms of σ_{5} and σ_{7}.
(e) Use the previous parts to write σ_{13} in terms of σ_{3} and σ_{5}.

Problem 5. Congruences on Ramanujan's tau function.
(a) Prove that

$$
E_{6}^{2}=E_{12}-\frac{762048}{691} \Delta
$$

(b) Using the factorisations $504=2^{3} 3^{2} 7,65620=2^{4} 3^{2} 5^{7} 13,762048=2^{6} 3^{5} 7^{2}$, deduce that

$$
756 \tau(n)=65 \sigma_{11}(n)+691 \sigma_{5}(n)-252 \cdot 691 \sum_{j=1}^{n-1} \sigma_{5}(j) \sigma_{5}(n-j)
$$

Deduce the Ramanujan's congruence

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

Problem 6. From the dimension formula for the spaces of modular forms we can see that the only integers k for which $\operatorname{dim}\left(S_{k}\right)=2$ are $k \in\{24,28,30,32,34,36,38\}$.
(a) Choose your favourite k from the list above and use the commands mfinit and mfbasis in PARI/GP to obtain a basis $\left\{f_{1}, f_{2}\right\}$ for the space S_{k} with the chosen k.
(b) Use the properties of Hecke operators given in the lectures to compute $T_{2} f_{1}$ and $T_{2} f_{2}$. That is, write the cusp forms $T_{2} f_{1}$ and $T_{2} f_{2}$ in terms of the basis $\left\{f_{1}, f_{2}\right\}$.
(c) Use the command mfhecke to check your computations of part (b).

Problem 7. (Bonus) In this exercise you will prove a relation between Bernoulli Numbers and the Riemann zeta function. Recall that Bernoulli numbers can be defined as the rational numbers B_{k} for $k \geq 0$ given by the equation

$$
\frac{t}{\exp (t)-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} t^{k} \in \mathbb{Q}[[t]]
$$

(a) Show that for all $|z|<1$ we have

$$
\pi z \frac{\cos (\pi z)}{\sin (\pi z)}=\sum_{k \geq 0}(2 \pi i)^{k} \frac{B_{k}}{k!} z^{k}
$$

(b) Use Euler's identity $\pi \frac{\cos (\pi z)}{\sin (\pi z)}=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{z+n}\right)$ to prove that

$$
\pi z \frac{\cos (\pi z)}{\sin (\pi z)}=1-2 \sum_{k \geq 2, e v e n} \zeta(k) z^{k}
$$

(c) Deduce that

$$
\zeta(k)=-\frac{(2 \pi i)^{k} B_{k}}{2 \cdot k!}
$$

Problem 8. (Bonus) Given a lattice $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \subset \mathbb{C}$, where $\omega_{1} / \omega_{2} \in H$, we define the j-invariant $j(\Lambda)$ of Λ as the value $j\left(\omega_{1} / \omega_{2}\right):=1728 \frac{E_{4}\left(\omega_{1} / \omega_{2}\right)^{3}}{E_{4}\left(\omega_{1} / \omega_{2}\right)^{3}-E_{6}\left(\omega_{1} / \omega_{2}\right)^{2}}$.
(a) Show that $j(z)$ is a modular function.

The q-expansion of j looks like $j(z)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+\cdots$.
(b) Show that $j(i)=1728$ and $j(\rho)=0$ (where $\rho=\exp (2 \pi i / 3)$).
(c) Let $z \in \mathcal{D}$ (see Problem 1 of List 1 for the definition of \mathcal{D}). Prove the following statement: if z lies on the boundary of \mathcal{D} or $\operatorname{Re}(z)=0$, then $j(z) \in \mathbb{R}$.
(d) Show that $j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash H \rightarrow \mathbb{C}$ given by $j([z]):=j(z)$ is well-defined and prove that j is bijective. (Here $[z]$ denotes the orbit of z under the action of $\left.\mathrm{SL}_{2}(\mathbb{Z}).\right)$ Conclude that the j-invariant gives a bijection

$$
\{\text { lattices in } \mathbb{C}\} /(\text { homothety }) \rightarrow \mathbb{C} .
$$

(Hint: Recall that there is a bijection between the quotient $\mathrm{SL}_{2}(\mathbb{Z}) \backslash H$ and \{lattices in $\left.\mathbb{C}\right\} /($ homothety $)$.)
(e) Prove the converse to part (c).

