PROBLEMS MODULAR FORMS CIMPA 2023

MAR CURCÓ IRANZO, LAURA GEATTI, VALENTIJN KAREMAKER

1. List 1

Problem 1. Let $\mathcal{D}:=\{z \in H:|z| \geq 1$ and $|\operatorname{Re}(z)| \leq 1 / 2\}$ be the fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$ described in the lectures. Prove the following statements.
(a) If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ is such that $\gamma\left(\tau_{1}\right)=\tau_{2}$ for some $\tau_{1}, \tau_{2} \in \mathcal{D}$, then $c \in\{-1,0,1\}$.
(b) If $\gamma=\left(\begin{array}{ll}a & b \\ 1 & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ is such that $\gamma\left(\tau_{1}\right)=\tau_{2}$ for some $\tau_{1}, \tau_{2} \in \mathcal{D}$, then $d \in\{-1,0,1\}$
(c) If $\gamma=\left(\begin{array}{ll}a & b \\ 1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ then $b=-1$. Moreover, if γ is such that $\gamma\left(\tau_{1}\right)=\tau_{2}$ for some $\tau_{1}, \tau_{2} \in \mathcal{D}$, then $a \in\{-1,0,1\}$. Moreover, for each $a \in\{-1,0,1\}$, describe which are the possible τ_{1} and τ_{2} (note that $\tau_{1}=\tau_{2}$ is admissible).

Problem 2. In this exercise you will prove that the matrices $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ generate the group $\mathrm{SL}_{2}(\mathbb{Z})$.
(a) Consider $\Gamma^{\prime}:=\langle T, S\rangle \subseteq \mathrm{SL}_{2}(\mathbb{Z})$. Given any $z \in H$, show that there is a matrix $\gamma \in \Gamma^{\prime}$ such that $\operatorname{Im}(\gamma z)$ is maximal in the orbit of z under the group Γ^{\prime}. (Hint: use the formula $\operatorname{Im}(\gamma z)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and mimic the arguments given in the lectures.)
(b) Prove the classification of the stabilizers given in the lectures. That is, if $I(z)$ is the stabilizer of $z \in \mathcal{D}$ under $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}) \backslash\{ \pm I d\}$, show that
(1) if $z \in \operatorname{int}(\mathcal{D})$, then $I(z)=\{I d\}$.
(2) if $z=i$, then $I(z)=\{I d, S\}$.
(3) if $z=\rho=e^{2 \pi i / 3}$, then $I(z)=\left\{I d, S T,(S T)^{2}\right\}$.
(4) if $z=-\bar{\rho}=e^{\pi i / 3}$, then $I(z)=\left\{I d, T S,(T S)^{2}\right\}$.
(c) Use part (a) and (b) to show that $\Gamma^{\prime}=\mathrm{SL}_{2}(\mathbb{Z})$. (Hint: consider z a point in the interior of the fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$.)

Problem 3. For $k>2$ an integer, we defined the function $G_{k}(\Lambda)$ on lattices of \mathbb{C} and we considered $G_{k}(z)$ the expression of $G_{k}(\Lambda)$ as a function defined on H. On the other hand we also defined the function $E_{k}(z)$ on the complex upper-half plane H.
(a) Show that $G_{k}(z)=2 \zeta(k) \cdot E_{k}(z)$, where $\zeta(k)$ is Riemann's Zeta function $\zeta(k)=\sum_{r \geq 1} \frac{1}{r^{k}}$. (Hint: given $(m, n) \neq(0,0)$ in \mathbb{Z}^{2}, consider $r=\operatorname{gcd}(m, n)$).
(b) Use Problem 2 to show that $E_{k}(z)$ transforms as a modular form of weight k; that is,

$$
E_{k}(\gamma z)=(c z+d)^{k} E_{k}(z)
$$

for any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ by checking it for S and T.

[^0]Problem 4. Zeroes of modular forms.
(a) Let $\rho=\exp (2 \pi i / 3)$. Show that $E_{4}(\rho)=0$. (Hint: $E_{4}(-1 / z)=z^{4} E_{4}(z)$.)
(b) Show that $E_{6}(i)=0$.
(c) Use the Valence formula to show that E_{4} has a simple zero at ρ and no other zero in H and E_{6} has a simple zero at i and no other zero in H.

Problem 5. In this exercise you will show that the only modular forms of weight zero are constant functions.
(a) Show that there exists $C \in \mathbb{R}_{>0}$ such that any element in H is $\mathrm{SL}_{2}(\mathbb{Z})$-equivalent to some $z \in H$ with $\operatorname{Im}(z) \geq C$. (You can take e.g. $C=\sqrt{3} / 2$.)
(b) Deduce that if $f: H \rightarrow \mathbb{C}$ is a cusp form of weight 0 , then $|f|$ attains a maximum on H.
(c) Conclude that the space of modular forms of weight zero consists exactly of the constant functions $H \rightarrow \mathbb{C}$. (Hint: use the maximum modulus principle.)

Problem 6 (Bonus). Recall the definition of the Eisenstein series $E_{k}(z)=\frac{1}{2} \sum_{(c, d) \in \mathbb{Z}^{2}, \operatorname{gcd}(c, d)=1} \frac{1}{(c z+d)^{k}}$. For $k=2$ this is not a modular function, but also satisfies some transformation properties w.r.t. the action of $\mathrm{SL}_{2}(\mathbb{Z})$.
(a) Show that E_{2} satisfies

$$
\begin{gathered}
E_{2}(z+1)=E_{2}(z) \\
z^{-2} E_{2}\left(-\frac{1}{z}\right)=E_{2}(z)+\frac{12}{2 \pi i z} \\
(c z+d)^{-2} E_{2}\left(\frac{a z+b}{c z+d}\right)=E_{2}(z)+\frac{12 c}{2 \pi i(c z+d)}
\end{gathered}
$$

You can use without proof the two following identities:

$$
\begin{gathered}
\sum_{m \neq 0} \sum_{n \in \mathbb{Z}}\left(\frac{1}{m z+n}-\frac{1}{m z+n+1}\right)=0 \\
\sum_{n \in \mathbb{Z}} \sum_{m \neq 0}\left(\frac{1}{m z+n}-\frac{1}{m z+n+1}\right)=-\frac{2 \pi i}{z}
\end{gathered}
$$

We define Dedekind's eta function as $\eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$, where $q=\exp ^{2 \pi i z}$.
(b) Show that $\frac{1}{2 \pi i} \frac{d}{d z} \log (\eta(z))=\frac{1}{24} E_{2}(z)$.
(c) Show that the function $\eta(z)$ satisfies

$$
\begin{gathered}
\eta(z+1)=\exp \left(\frac{1}{24}\right) \eta(z) \\
\eta\left(\frac{-1}{z}\right)=\sqrt{-i z} \eta(z) \\
\eta\left(\frac{a z+b}{c z+d}\right)=\epsilon_{\eta}(a, b, c, d) \sqrt{-i(c z+d)} \eta(z)
\end{gathered}
$$

where $\epsilon_{\eta}(a, b, c, d)$ is some 24 th root of unity.
(d) Conclude that $\eta(z)^{24}$ is a modular form of weight 12.

[^0]: Date: January 11, 2023.

