Teachers: Jared Asuncion and Francesco Campagna

Exercises for CFT computations

CHALLENGE PROBLEM

You can hand-in the solutions to the challenge problem until Thursday at 6.30.
Here is the challenge:

- Choose you favourite $N \in \mathbf{Z}_{>0}$ (e.g. 250519).
- Compute the first 5 primes of the form $x^{2}+N y^{2}$ with $x, y \in \mathbf{Z}$ and give us the corresponding x and y.
- What is the density of the set of primes of the form $x^{2}+N y^{2}$?
- By which splitting condition are the primes of the form $x^{2}+N y^{2}$ characterised?

In some points of the following exercises you may want to use PARI/GP to perform your computations.

Exercise 1

Consider the set S_{2} of primes $p \in \mathbf{Z}$ such that $p=x^{2}+2 y^{2}$ for some $x, y \in \mathbf{Z}$.

1. Compute the ratio

$$
\delta_{n}:=\frac{\#\left\{p \leq n: p \in S_{2}\right\}}{\#\{p \leq n: p \text { prime }\}}
$$

for $n=10^{5}, 10^{6}$.
2. Prove that $p \in S_{2}$ if and only if there exists an irreducible element $\pi \in \mathbf{Z}[\sqrt{-2}]$ such that $p=\pi \bar{\pi}$ (here • denotes complex conjugation).
3. Prove that if p is an odd prime, then $p \in S_{2}$ if and only if $p \equiv 1,3 \bmod 8$. Deduce that S_{2} has density $1 / 2$.

Exercise 2

Let G be a finite group and consider the weighted lattice diagram L_{G} whose vertexes v correspond to subgroups G_{v} of G and there is an arrow from a vertex v to a vertex w if $G_{v} \subseteq G_{w}$. Each arrow from v to w is weighted by the index $\left|G_{w}: G_{v}\right|$.

1. Let L_{G}^{\prime} be the weighted lattice obtained by reversing the arrows in L_{G} and keeping the same weights. Draw L_{G} and L_{G}^{\prime} for all finite groups of order 8
2. Show that, if G is abelian, then L_{G}^{\prime} is isomorphic to L_{G}. Does this statement hold if G is not abelian?
3. Can you find an interpretation of L_{G}^{\prime} ?

Exercise 3

Show that the norm is multiplicative in towers of number fields i.e. if $K \subseteq F \subseteq L$ are number fields, then for every $\alpha \in L$ we have

$$
N_{L / K}(\alpha)=N_{F / K}\left(N_{L / F}(\alpha)\right)
$$

Exercise 4

What is your opinion: is the set of primes whose first digit is a $1\left(\right.$ e.g. $\left.10^{35}+69\right)$ characterised by a splitting condition? Does it have a density?

Exercise 5

Consider the set S_{15} of primes $p \in \mathbf{Z}$ such that $p=x^{2}+15 y^{2}$ for some $x, y \in \mathbf{Z}$.

1. Show that $p \in S_{15}$ if and only if there exists an irreducible element $\pi \in \mathbf{Z}\left[\frac{1+\sqrt{-15}}{2}\right]$ such that $p=\pi \bar{\pi}$ (here - denotes complex conjugation).
2. Compute the complete lattice of subfields of $\mathbf{Q}\left(\zeta_{15}\right)$.
3. Show that the elements $p \in S_{15}$ are characterised by congruence conditions modulo 15.
4. Compute the natural density of the set S_{15}.

Exercise 6

Let $d>0$ be a squarefree positive integer and let $\mathcal{O}_{d}:=\mathbf{Z}[\sqrt{d}]$. Recall that the ring \mathcal{O}_{d} is equal to the ring of integers $\widetilde{\mathcal{O}}_{d}$ of $\mathbf{Q}(\sqrt{d})$ if and only if $d \not \equiv 1 \bmod 4$.

1. Prove that $x^{2}-d y^{2}=-1$ has a solution in $x, y \in \mathbf{Z}$ if and only if there exists $u \in \mathcal{O}_{d}^{\times}$such that $N_{\mathbf{Q}(\sqrt{d}) / \mathbf{Q}}(u)=-1$.
2. Suppose that $d \equiv 1 \bmod 8$. Show that -1 is the norm of some unit in \mathcal{O}_{d} if and only if it is the norm of some unit in $\widetilde{\mathcal{O}}_{d}=\mathbf{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.
3. Assume from now on that $d \equiv 5 \bmod 8$. Show that the ideal $\mathfrak{p}_{2}:=(2,1+\sqrt{d}) \subseteq \mathcal{O}_{d}$ is prime and show that $\mathcal{O}_{d} / \mathfrak{p}_{2} \cong \mathbf{F}_{2}$.
4. Show that $2 \widetilde{\mathcal{O}}_{d}$ is a prime ideal in $\widetilde{\mathcal{O}}_{d}=\mathbf{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ and that there is a commutative diagram

where the upper horizontal arrow is reduction modulo 2 and the lower horizontal arrow is reduction modulo \mathfrak{p}_{2}.
5. Show that if $x \in \widetilde{\mathcal{O}}_{d}$ is such that $(x \bmod 2) \in \mathbf{F}_{2}$ then $x \in \mathcal{O}_{d}$.
6. Deduce that for $u \in \widetilde{\mathcal{O}}_{d}^{\times}$either u or u^{3} is in \mathcal{O}_{d}. Conclude that, also in this case, -1 is the norm of some unit in \mathcal{O}_{d} if and only if it is the norm of some unit in $\widetilde{\mathcal{O}}_{d}$.
7. By Dirichlet's unit theorem, we have

$$
\widetilde{\mathcal{O}}_{d}^{\times}=\langle-1\rangle \times\left\langle u_{d}\right\rangle
$$

where u_{d} is determined up to sign. Write a program in PARI that computes the proportion of positive squarefree $d \equiv 5 \bmod 8$ up to 10^{6} such that $u_{d} \in \mathcal{O}_{d}$. Based on your computation, what do you think is the "true" proportion of d 's satisfying this property?

