CIMPA schoolComputational number theoryUniversity of the Philippines Diliman9-20 January 2023Teachers: Valerio Talamanca and Francesco Campagna

Programming challenges

Use PARI/GP to answer the following questions.

Notation and conventions: For a number field K we denote by \mathcal{O}_K its ring of integers. Everything in the text of the exercises happens inside a fixed algebraic closure of \mathbf{Q} (but whatever happens in your computer may not!).

Some training on number fields

Consider the polynomial $f(x) = x^6 - 2x^4 - 9x^3 + 16x^2 + 24x + 24$ over **Q**.

- 1. Show that f is irreducible over \mathbf{Q} and let L be the number field generated over the rationals by a root of f.
- 2. Show that L is not a Galois extension of \mathbf{Q} and compute Galois group G and defining polynomial for its Galois closure.
- 3. Show that L contains a subfield isomorphic to $\mathbf{Q}[x]/(x^3 x^2 x + 4)$. What are the other subfields of L? Show that the results you obtain are compatible with the ones obtained in the previous question by looking at the subgroups lattice of G here.
- 4. Compute an integral basis for L and the order of the class group Cl_L . Find at least 10 prime ideals of L whose class in Cl_L has order 5.
- 5. Use Dirichlet's units theorem and point (3) to predict the rank and the torsion of the unit group \mathcal{O}_L^{\times} . Verify then directly with PARI/GP your conclusions by computing the full unit group of \mathcal{O}_L .
- 6. Compute numerically the following limit:

 $\lim_{x \to \infty} \frac{\#\{\text{prime ideals of } \mathbf{Q} \text{ up to } x \text{ that split completely in } \mathbf{Q} \subseteq L\}}{\#\{\text{prime ideals of } \mathbf{Q} \text{ up to } x\}}$

and verify that it is very close to 1/12.

More training: write the function

This exercise asks you to write various functions in PARI/GP. You are completely free to write the functions as you like (for instance, you can decide in which form the input is given).

- 1. Write a function that, given as input an integer a and a bound n, returns the ratio between the number of primes $p \leq n$ for which $\langle a \rangle = \mathbf{F}_p^{\times}$ and the total number of primes $p \leq n$.
 - Test your function with $n = 10^6$ and a = 2, 3, 5, 8, 9.
 - What is in your opinion the integer a for which your function with $n = 10^6$ gives the largest result? And the smallest?
- 2. Write a function that, given as input two Galois number fields K and L, returns as output a polynomial defining $K \cap L$.
 - Test your function with the number fields defined by

$$f(x) = x^{20} - 11x^{18} + 52x^{16} - 139x^{14} + 241x^{12} - 287x^{10} + 241x^8 - 139x^6 + 52x^4 - 11x^2 + 10x^4 - 10x^4 + 10x^4 - 10x^4 + 10x^4 - 10x^4 -$$

and

$$g(x) = x^{20} - 5x^{19} + 11x^{18} - 12x^{17} + 14x^{16} - 14x^{15} - 54x^{14} + 17x^{13} + 84x^{12} + 14x^{11} + 76x^{10} + 432x^9 + 654x^8 + 588x^7 + 425x^6 + 236x^5 + 77x^4 + 2x^3 - 7x^2 - x + 1.$$

You should obtain an intersection of degree 10.

3. Given a number field K and a prime p, the splitting type of p in K is the list $(f_1, ..., f_g)$ of residue degrees $f_i = [\mathcal{O}_K/\mathfrak{p}_i : \mathbf{Z}/p\mathbf{Z}]$ coming from the factorisation $p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_g^{e_g}$. We order the list $(f_1, ..., f_g)$ in such a way that $f_i \leq f_{i+1}$.

Write a function that, given as inputs two number fields K_1 , K_2 and a bound n, prints the primes $p \leq n$ and their corresponding splitting type in K_1 and K_2 .

• Test your function on the number fields defined by $f(x) = x^8 - 31$ and $g(x) = x^8 - 496$. What do you notice? Are these two number fields isomorphic?

Mystery 1: strange splittings

Consider the polynomial $f(x) = x^8 - x^7 + 2x^6 + 3x^5 - x^4 + 3x^3 + 2x^2 - x + 1$ and let K be the number field obtained by adjoining to **Q** a root of f.

1. Show that K is Galois over \mathbf{Q} and compute its Galois group.

2. Show that there is a chain of subfields

$$\mathbf{Q} \subseteq \mathbf{Q}(\sqrt{-39}) \subseteq \mathbf{Q}(\sqrt{-3},\sqrt{13}) \subseteq K.$$

- 3. The previous point can also be solved by showing that $K = \mathbf{Q}\left(\sqrt{-3}, \sqrt{(-1+\sqrt{13})/2}\right)$. Verify this statement.
- 4. Compute the primes $\mathfrak{p} \subseteq \mathbf{Q}(\sqrt{-39})$ with norm up to 2000 that split completely in K. There is something that all these primes have in common. What is it?
- 5. Compute the primes $\mathfrak{p} \subseteq \mathbf{Q}(\sqrt{-39})$ with norm up to 2000 that split completely in $\mathbf{Q}(\sqrt{-3},\sqrt{13})$. There is something that all these primes have in common. What is it?
- 6. Based on your computations, can you make a conjecture that relates the Galois group $\operatorname{Gal}(K/\mathbf{Q}(\sqrt{-39}))$ and the class group of $\mathbf{Q}(\sqrt{-39})$?

The phenomena that this problem displays will be explained in the course *Explicit class field theory*.

Mystery 2: a strange equation over finite fields

Consider the equation in two variables $y^2 + y = x^3 - 1590140x - 771794326$.

1. For every prime p let

$$S_p := \{(x, y) \in \mathbf{F}_p^2 : y^2 + y = x^3 - 1590140x - 771794326\}$$

Compute $\#S_p$ for all $p \leq 1000$.

- 2. Compute the proportion of primes $p \leq 1000$ for which $p = S_p$. Is it a random value?
- 3. Make a change of variables to put the equation in the form $y^2 = f(x)$ where f(x) is a monic degree 3 polynomial. Find a polynomial that defines the splitting field L of f over \mathbf{Q} .
- 4. Show that L has a unique quadratic subfield K. There is something connecting the field K and the primes p such that $p = S_p$. Can you guess what it is?

The phenomena that this problem displays will be explained in the course CM elliptic curves.