Teachers: Valerio Talamanca and Francesco Campagna

Programming challenges

Use PARI/GP to answer the following questions.
Notation and conventions: For a number field K we denote by \mathcal{O}_{K} its ring of integers. Everything in the text of the exercises happens inside a fixed algebraic closure of \mathbf{Q} (but whatever happens in your computer may not!).

Some training on number fields

Consider the polynomial $f(x)=x^{6}-2 x^{4}-9 x^{3}+16 x^{2}+24 x+24$ over \mathbf{Q}.

1. Show that f is irreducible over \mathbf{Q} and let L be the number field generated over the rationals by a root of f.
2. Show that L is not a Galois extension of \mathbf{Q} and compute Galois group G and defining polynomial for its Galois closure.
3. Show that L contains a subfield isomorphic to $\mathbf{Q}[x] /\left(x^{3}-x^{2}-x+4\right)$. What are the other subfields of L ? Show that the results you obtain are compatible with the ones obtained in the previous question by looking at the subgroups lattice of G here.
4. Compute an integral basis for L and the order of the class group Cl_{L}. Find at least 10 prime ideals of L whose class in Cl_{L} has order 5 .
5. Use Dirichlet's units theorem and point (3) to predict the rank and the torsion of the unit group \mathcal{O}_{L}^{\times}. Verify then directly with PARI/GP your conclusions by computing the full unit group of \mathcal{O}_{L}.
6. Compute numerically the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\#\{\text { prime ideals of } \mathbf{Q} \text { up to } x \text { that split completely in } \mathbf{Q} \subseteq L\}}{\#\{\text { prime ideals of } \mathbf{Q} \text { up to } x\}}
$$

and verify that it is very close to $1 / 12$.

More training: write the function

This exercise asks you to write various functions in PARI/GP. You are completely free to write the functions as you like (for instance, you can decide in which form the input is given).

1. Write a function that, given as input an integer a and a bound n, returns the ratio between the number of primes $p \leq n$ for which $\langle a\rangle=\mathbf{F}_{p}^{\times}$and the total number of primes $p \leq n$.

- Test your function with $n=10^{6}$ and $a=2,3,5,8,9$.
- What is in your opinion the integer a for which your function with $n=10^{6}$ gives the largest result? And the smallest?

2. Write a function that, given as input two Galois number fields K and L, returns as output a polynomial defining $K \cap L$.

- Test your function with the number fields defined by

$$
f(x)=x^{20}-11 x^{18}+52 x^{16}-139 x^{14}+241 x^{12}-287 x^{10}+241 x^{8}-139 x^{6}+52 x^{4}-11 x^{2}+1
$$

and

$$
\begin{aligned}
g(x)= & x^{20}-5 x^{19}+11 x^{18}-12 x^{17}+14 x^{16}-14 x^{15}-54 x^{14}+17 x^{13}+84 x^{12} \\
& +14 x^{11}+76 x^{10}+432 x^{9}+654 x^{8}+588 x^{7}+425 x^{6}+236 x^{5}+77 x^{4}+2 x^{3} \\
& -7 x^{2}-x+1 .
\end{aligned}
$$

You should obtain an intersection of degree 10 .
3. Given a number field K and a prime p, the splitting type of p in K is the list $\left(f_{1}, . ., f_{g}\right)$ of residue degrees $f_{i}=\left[\mathcal{O}_{K} / \mathfrak{p}_{i}: \mathbf{Z} / p \mathbf{Z}\right]$ coming from the factorisation $p \mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{g}^{e_{g}}$. We order the list $\left(f_{1}, . ., f_{g}\right)$ in such a way that $f_{i} \leq f_{i+1}$.
Write a function that, given as inputs two number fields K_{1}, K_{2} and a bound n, prints the primes $p \leq n$ and their corresponding splitting type in K_{1} and K_{2}.

- Test your function on the number fields defined by $f(x)=x^{8}-31$ and $g(x)=$ $x^{8}-496$. What do you notice? Are these two number fields isomorphic?

Mystery 1: strange splittings

Consider the polynomial $f(x)=x^{8}-x^{7}+2 x^{6}+3 x^{5}-x^{4}+3 x^{3}+2 x^{2}-x+1$ and let K be the number field obtained by adjoining to \mathbf{Q} a root of f.

1. Show that K is Galois over \mathbf{Q} and compute its Galois group.
2. Show that there is a chain of subfields

$$
\mathbf{Q} \subseteq \mathbf{Q}(\sqrt{-39}) \subseteq \mathbf{Q}(\sqrt{-3}, \sqrt{13}) \subseteq K
$$

3. The previous point can also be solved by showing that $K=\mathbf{Q}(\sqrt{-3}, \sqrt{(-1+\sqrt{13}) / 2})$. Verify this statement.
4. Compute the primes $\mathfrak{p} \subseteq \mathbf{Q}(\sqrt{-39})$ with norm up to 2000 that split completely in K. There is something that all these primes have in common. What is it?
5. Compute the primes $\mathfrak{p} \subseteq \mathbf{Q}(\sqrt{-39})$ with norm up to 2000 that split completely in $\mathbf{Q}(\sqrt{-3}, \sqrt{13})$. There is something that all these primes have in common. What is it?
6. Based on your computations, can you make a conjecture that relates the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbf{Q}(\sqrt{-39}))$ and the class group of $\mathbf{Q}(\sqrt{-39})$?

The phenomena that this problem displays will be explained in the course Explicit class field theory.

Mystery 2: a strange equation over finite fields

Consider the equation in two variables $y^{2}+y=x^{3}-1590140 x-771794326$.

1. For every prime p let

$$
S_{p}:=\left\{(x, y) \in \mathbf{F}_{p}^{2}: y^{2}+y=x^{3}-1590140 x-771794326\right\}
$$

Compute $\# S_{p}$ for all $p \leq 1000$.
2. Compute the proportion of primes $p \leq 1000$ for which $p=S_{p}$. Is it a random value?
3. Make a change of variables to put the equation in the form $y^{2}=f(x)$ where $f(x)$ is a monic degree 3 polynomial. Find a polynomial that defines the splitting field L of f over \mathbf{Q}.
4. Show that L has a unique quadratic subfield K. There is something connecting the field K and the primes p such that $p=S_{p}$. Can you guess what it is?
The phenomena that this problem displays will be explained in the course CM elliptic curves.

