1. Let K be a number field, and let $\mathrm{Cl}(K)$ be the class group of K. Prove that the relation on ideals I and J of \mathcal{O}_{K} defined as $I \sim J$ iff there exists $\alpha, \beta \in \mathcal{O}_{K}$ such that $\alpha I=\beta J$. Prove that this is an equivalence relation. Prove the set of equivalence classes under \sim on ideals of \mathcal{O}_{K} equipped with the operation induced by ideal multiplication is an (abelian) group.
2. Let $K=\mathbb{Q}(\gamma)$, where γ is the root of a monic irreducible polynomial $f(x)$ of degree d. Show that there are at most d embeddings of $K \hookrightarrow \mathbb{C}$ that fix \mathbb{Q} pointwise.
3. Prove that the numbers $\zeta_{3} \cdot \sqrt[3]{2}$ and $\zeta_{3}^{2} \cdot \sqrt[3]{2}$ are not in $\mathbb{Q}(\sqrt[3]{2})$.
4. Show that $\operatorname{Gal}\left(\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right) / \mathbb{Q}\right)=S_{3}$, where S_{3} is the symmetric group on 3 letters.
5. If K is a normal extension of \mathbb{Q}, and $\operatorname{Gal}(K / \mathbb{Q})$ denotes the Galois group. Let H be a subgroup of $\operatorname{Gal}(K / \mathbb{Q})$, define

$$
K^{H}=\{\alpha \in K \mid \sigma(\alpha)=\alpha \quad \forall \sigma \in H\} .
$$

Prove that K^{H} is a field.
6. Let K be a normal extension of \mathbb{Q}, and let \mathfrak{P} be an unramified prime ideal in \mathcal{O}_{K} lying above a rational prime p. For a prime ideal \mathfrak{P}^{\prime} also lying above p, recall that there is an element $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ such that $\sigma(\mathfrak{P})=\mathfrak{P}^{\prime}$. Show that $\operatorname{Frob}_{\mathfrak{P}}=\sigma \operatorname{Frob}_{\mathfrak{F}}{ }^{\prime} \sigma^{-1}$.
7. Let $K=\mathbb{Q}\left(\sqrt[3]{19}, \zeta_{3}\right)$.
(a) What is the Galois group over \mathbb{Q} ?
(b) How does (3) factor in \mathcal{O}_{K} ?
(c) Compute e, f, and g for $p=3$.
(d) Can you compute the decomposition group and inertia group of a prime above 3 ?
8. Determine the decomposition group and the inertia group for the primes above 2 in $\mathbb{Q}\left(\zeta_{23}\right)$.

