- Let *K* be a number field, and let Cl(*K*) be the class group of *K*. Prove that the relation on ideals *I* and *J* of *O_K* defined as *I* ~ *J* iff there exists α, β ∈ *O_K* such that α*I* = β*J*. Prove that this is an equivalence relation. Prove the set of equivalence classes under ~ on ideals of *O_K* equipped with the operation induced by ideal multiplication is an (abelian) group.
- 2. Let $K = \mathbb{Q}(\gamma)$, where γ is the root of a monic irreducible polynomial f(x) of degree d. Show that there are at most d embeddings of $K \hookrightarrow \mathbb{C}$ that fix \mathbb{Q} pointwise.
- 3. Prove that the numbers $\zeta_3 \cdot \sqrt[3]{2}$ and $\zeta_3^2 \cdot \sqrt[3]{2}$ are *not* in $\mathbb{Q}(\sqrt[3]{2})$.
- 4. Show that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}) = S_3$, where S_3 is the symmetric group on 3 letters.
- 5. If *K* is a normal extension of \mathbb{Q} , and $\operatorname{Gal}(K/\mathbb{Q})$ denotes the Galois group. Let *H* be a subgroup of $\operatorname{Gal}(K/\mathbb{Q})$, define

$$K^{H} = \{ \alpha \in K \mid \sigma(\alpha) = \alpha \quad \forall \sigma \in H \}.$$

Prove that K^H is a field.

- 6. Let *K* be a normal extension of \mathbb{Q} , and let \mathfrak{P} be an unramified prime ideal in \mathcal{O}_K lying above a rational prime *p*. For a prime ideal \mathfrak{P}' also lying above *p*, recall that there is an element $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{P}) = \mathfrak{P}'$. Show that $\operatorname{Frob}_{\mathfrak{P}} = \sigma \operatorname{Frob}_{\mathfrak{P}'} \sigma^{-1}$.
- 7. Let $K = \mathbb{Q}(\sqrt[3]{19}, \zeta_3)$.
 - (a) What is the Galois group over \mathbb{Q} ?
 - (b) How does (3) factor in \mathcal{O}_K ?
 - (c) Compute e, f, and g for p = 3.
 - (d) Can you compute the decomposition group and inertia group of a prime above 3?
- 8. Determine the decomposition group and the inertia group for the primes above 2 in $\mathbb{Q}(\zeta_{23})$.