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Division Polynomials
Start with variables A and B. Define ¢, € Z[z,y, A, B] by

o =0

Pr=1

P2 =2y

3 = 3z* + 6Az? + 12Bx — A?

i (e A D B A A g e g A )

Yomy1 = wm+2¢7?;1 FF l/)m_ﬂ,/)fnﬂ, for m > 2
tom = (29) " (Um) (Wmi 221 — Ym—2¥2,11), for m > 3.

We call ¢,,, the mth division polynomial.
Fact:

i 1/}2m+1 € Z[ﬂc,y2,A,B]
2, me € 2yZ[$ay2vAaB]




Torsion Points of E
Let E: y? = 23+ Az + B, where A,B € K.
Then
; ¢2m+1 & Z[a@ A, B]
. Yom € 2yZ[z, A, B]
. The roots 19, +1 are the z-coordinates of points in E[2m + 1]
(except O)
. For m > 1, the roots y~ 49, are the z-coordinates of points in
E[2m)] (except E[2])
s P ={(z,y) € E(K), then

gbn = 111/1,,21 T ¢n+1¢n71
wn = (4y) " (Ynr2¥i_1 — Yn2¥i i)




The Weil pairing

Let E be an elliptic curve over K and let n be a positive integer.
Assume that the characteristic of K does not divide n. Then there
exists a pairing

en : Eln] x E[n] — pn,

that satisfies the following properties:
1 e, is bilinear in each variable. This means that

en(S’l aF SQ,T) = Gn(Sl,T)en(SQ,T)

and
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for all S,.S51,59,T,11,T5 € E[n]
2 e, is nondegenerate in each variable. This means that
> ife,(S,T) =1 for all T € E[n] then S = O, and
> if e,(S,T) =1 for all S € E[n] then T = O.




The Weil pairing (cont.)

Let E be an elliptic curve over K and let n be a positive integer.
Assume that the characteristic of K does not divide n. Then there
exists a pairing

en : E[n] x E[n] = pn,

that satisfies the following properties:

St =i fora | el
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5 en(0S,0T) = o(e,(S,T)) for all automorphisms o of K such that
o is the identity map on the coefficients of E.

6 en(u(S),u(T)) = e, (S, T)%e for all (separable) endomorphisms
u of E.




Elliptic curves over finite fields

Let ¢ = p®, where p is an odd prime and e > 1.
Let E/F, be an elliptic curve and a = ¢ + 1 — #E(F,).

Theorem (Hasse-Weil)

la] < 2./q.

Theorem
The Frobenius endomorphism ¢, satisfies the equation

¢ — lalgg +[g] = 0.

Moreover, a is the unique integer such that
a = Trace((¢q)m) (mod m)

for all m coprime to p.

The polynomial X2 — aX + ¢ is called the characteristic polynomial of the

Frobenius. The integer a is called the trace of Frobenius.
{0 o K o o]




Baby steps-giant steps

Goal: Find order of a point P € E(F,).

Let P € E(F,).

Baby steps: Compute @ := [¢ + 1]P. Compute [j]P for
e e e

Giant steps: Compute R := [2m]P, then compute

Q+ [k]R, fork=—m,—(m—1),...,m—1,m

until there is a match @ + [k]R = £[j] P, for some j.

Then [M]P = O, where M = q+ 1+ 2mk F j.

Let p1,...,p, be the distinct prime divisors of M.

(*) Compute [M/p;] P for all i.

If [M/p;]P = O for some i, then replace M with M /p; and repeat (*).
Otherwise, M is the order of P.




Schoof’s method

Assume p > 3 and

By =g ok s B il ArB el

Recall that #E(F,) = p+ 1 — a with |a| < 2,/p.

Idea: Compute a modulo small primes /1, ..., £, such that

[Tj=1 ¢; > 4\/p. We can determine a, and hence #E(IFy), using the
Chinese remainder theorem.

1 Computation of a (mod 2):
\WENEE

a=1 (mod2) <= 3+ a4z + ag is irreducible  (mod p)
= gcd(a:3 + asz +ag, 2P —1) =1




Schoof’s method (cont.)

2 Computation of a (mod ¢), with ¢ odd:
For P = (z1,y1) € E[{](F,), we have

$2(P) + [pe] P = [agl¢p(P),

with ay = a (mod £),p; = p (mod £), and 0 < ay < ¢, |pe| < £/2.
If P has order £ then P is a solution of the following system of
equations

Ex ) ==z +diz +ag) =0, Wyz)=0

Thus
(@, y"") + [pel(z,y) = [ad (2P, 3?) (mod E(z,y), de(z)). (1)

To compute ay, try all b € {0,1,...,¢— 1} until we find the unique
value b such that (1) holds.




An Example:

Consider E : 42 = f(x) = 23 + 2z + 1 over Fy.
What is a (mod 2)?

We have z'% = 22 + 13z + 14 (mod f(z)).
Then

gediz =T ()= ged(xr HE2r i 4 fla )i =1

So E(F19) has no point of order 2.
Thus a =1 (mod 2).




An Example (cont.):

Consider E : 42 = f(z) = 22 + 2z + 1 over Fyg.
What is a (mod 5)?
We have 19 = —1 (mod 5).
o Let
(@)= ) ) = (e

2

) ar (5(37 —y),

R e e

361

Note 2/ = — ol e
x TTaE

o Find j € {0,1,2,3,4} such that
Gatse il e
We can find j subject to the condition 2’ — x%g =0 (mod v5).
Here,
s = 5z’ + 102" + 172° + 527 + 2° + 92° + 122 + 22° + 52° + 8z + 8.




An Example: (cont.)

It can be shown that 2’ — 2'® £ 0 (mod v5), but

i (f(x)(f(x)m i 1))2_96361_

6 L

3238 4+ 2\ °
T = <2y—19> —95'% — 222 (mod 1)

Thus, a = 2 (mod 5).
o To determine the sign, look at y-coordinates. It turns out that
(V' +92°)/y =0 (mod ).

That is, (2/,/) = (28, —48°) = [~2](2%, 4'9).
o=t et bauers LSl




An Example (cont.)

Consider E : 42 = f(z) = 22 + 2z + 1 over Fyg.
We have

Walr) = i9r A 22l o

Note that
¥3(8) =0 (mod 19).
The point (8,4) € E(F19) has order 3.
Thus
194+1—a=#E(F19) =0 (mod 3).

So a =2 (mod 3).
We have

Gla =t S st (irereycl S0 e s Ty ae== 0 Sa e CiplenCl SRRt G el (A0 )

Thus, a = 23 (mod 30).
Since |a| < 2v/19 < 9, we have a = —7. Thus

H#E(F19) =19+ 1—a =27,




Schoof algorithm (Given: E : y2 = 23 + Az + B over F))

Start with a set of primes S = {2,3,...,L} (p € S) such that H£eS€ > 4,/p.
To compute a; for odd £ € S, do:

(a) Let pe =p (mod £) with |pe| < £/2.

(b) Compute the x-coordinate z’ of
2 2
@' y) =" ,y" ) +pd(z,y) (mod vy).

(c) Forj=1,2,...,(¢6—1)/2, do:
(i) Compute z-coordinate z; of (z;,y;) = [j](z,y).
(i) If 2’ — 2% =0 (mod 4), go to (iii). Otherwise, try next j in (c).
If all values 1 < j < (¢ —1)/2 have been tried, go to step (d).
(iii) Compute y" and y;. If (' —y%)/y =0 (mod 1), then a = j
(mod ¢). If not, then a = —j (mod ¢).
(d) If all j with 1 < j < (£ — 1)/2 have been tried without success, let w? = p
(mod £). If w does not exist, then a =0 (mod ¢).
(e) If ged(numerator(a? — x4),1¢) = 1, then a =0 (mod ¢). Otherwise compute
ged(numerator(y? — yw)/y, ¥e). If ged is not 1, then a = 2w (mod £).
Otherwise, a = —2w (mod 2).




Constructing the Weil pairing




Divisors

Let E be an elliptic curve over K.

1. A divisor D on E is an element of the free abelian group Div(E)
generated by symbols [P], where P € E(K); that is,

DF= Z np[P|, np € Z,np =0, for all but finitely many P.
PeFE

2. The degree of a divisor D = " pcpnp[P] is

deg(D Z np.

IPELD)

3. Fact: The divisors of degree 0 form a subgroup Div’(E) of Div(E).




Divisors

Let E be an elliptic curve over K. Let K(E) denote the function field
of E.

4. For P € E(K), there is a function up, the uniformizer at P such
that

up(P) =0 and every f € K(FE) can be written as f = ulpg.

The order of f at P is r =: ordp(f).
ordp(f) > 0 means P is a zero of f
ordp(f) < 0 means P is a pole of f

5. For f € K(E) (f #0), the divisor of f is

div(f Z ordp(f)[P] € Div(E).
PeE




Divisors

Let E be an elliptic curve over K. Let K(E) denote the function field
of E.

. f € K(E) has only finitely many zeros and poles.

. deg(div(f)) =0

. div(f) =0 if and only if f is constant.

. A divisor D € Div(E) is called principal if D = div(f) for some f.

. D1, D9 € Div(E) are said to be linearly equivalent, written
D1 ~ Dy, if
D; — Dy = div(f), for some f.

. Pic(E) = Div(E)/(principal divisors);
Pic’(E) = Div?(E)/(principal divisors)




Riemann-Roch

Definition

A divisor D = Y~ pc ap[P] is said to be positive (written "D > 0") if
ap >0 forall P € FE.

Let D € Div(E). Define

L(D) := {f € K(E)* : div(f) + D > 0} U {0}.

Note that dimz £(D) < oo.

Remarks:
s L = K.
] D1 ~ D2 implies ,C(Dl) = £(D2)

Riemann-Roch Theorem

dimy L(D) = deg(D),
for all divisors D € Div(E) with deg D > 0.




Consequences

Corollary
Let P,@Q € E. Then (P) ~ (Q) if and only P = Q.

Proposition
Let £/K be an elliptic curve.

a For every D € DivY(E), there exists a unique P € E such that
D ~ (P)—(0).

Define o : Div'(E) — E to be the map that sends D to its
associated P.

b The map o is surjective.
c Let Dy, Dy € Div9(E). Then

O'(Dl) = O'(DQ) if and only if D1 ~ DQ.




Proposition (cont.)

d Thus o induces a bijection of sets (also denoted by o),
¢ : Pic®(E) — E,

with inverse given by

RISSEREECR i (TS (el R s et class o1 Reies (O3

(e) If E is given by a Weierstrass equation then the “geometric group
law” on E and the “algebraic group law” on PicO(E) using o are
the same.

Corollary
Let D =} pcpnp[P] € Div(E). Then D is a principal divisor if and
e WS e = G e e DTS i P )




Weil pairing construction

Let E/K be an elliptic curve. Assume that char(K) { n.
Let T € E[n]. Then there is a function f such that

div(f) = n(T) — n(O).
Similarly, if we let 7 € E with [n]T’ = T, then there is a function g such that

divig)= Y (IT'+R)-(R)

REE[n]

Then

div(f o [n]) = div(g"™).
After scaling, we may suppose f o [n] = g™.
If S € E[n], then for any X € E,

9(X +8)" = f([n]X + [n]S) = f([n]X) = g(X)"™.

We now define e,, : E[n| X E[n] — u, by
g(X +5)

ERS, ) == (%)




