Elliptic curves over finite fields and the Weil pairing

Jerome T. Dimabayao [†]

[†]jdimabayao@math.upd.edu.ph

Division Polynomials

Start with variables A and B. Define $\psi_m \in \mathbb{Z}[x, y, A, B]$ by

$$\begin{split} \psi_0 &= 0 \\ \psi_1 &= 1 \\ \psi_2 &= 2y \\ \psi_3 &= 3x^4 + 6Ax^2 + 12Bx - A^2 \\ \psi_4 &= 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3) \\ \psi_{2m+1} &= \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3, \text{ for } m \geq 2 \\ \psi_{2m} &= (2y)^{-1}(\psi_m)(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2), \text{ for } m \geq 3. \end{split}$$

0 0 0 0 0

We call ψ_m the *m*th division polynomial. Fact:

1.
$$\psi_{2m+1} \in \mathbb{Z}[x, y^2, A, B]$$

2. $\psi_{2m} \in 2y\mathbb{Z}[x, y^2, A, B]$

Torsion Points of *E* Let $E: y^2 = x^3 + Ax + B$, where $A, B \in K$.

Then

- 1. $\psi_{2m+1} \in \mathbb{Z}[x, A, B]$
- 2. $\psi_{2m} \in 2y\mathbb{Z}[x, A, B]$
- 3. The roots ψ_{2m+1} are the *x*-coordinates of points in E[2m+1] (except \mathcal{O})
- 4. For m > 1, the roots $y^{-1}\psi_{2m}$ are the *x*-coordinates of points in E[2m] (except E[2])
- 5. If $P = (x, y) \in E(K)$, then

$$nP = \left(\frac{\phi_n(x)}{\psi_n^2(x)}, \frac{\omega_n(x,y)}{\psi_n^3(x,y)}\right)$$

where

$$\phi_n = x\psi_n^2 - \psi_{n+1}\psi_{n-1}$$

$$\omega_n = (4y)^{-1}(\psi_{n+2}\psi_{n-1}^2 - \psi_{n-2}\psi_{n+1}^2).$$

The Weil pairing

Let E be an elliptic curve over K and let n be a positive integer. Assume that the characteristic of K does not divide n. Then there exists a pairing

 $e_n: E[n] \times E[n] \to \mu_n,$

that satisfies the following properties:

 $1 e_n$ is bilinear in each variable. This means that

$$e_n(S_1 + S_2, T) = e_n(S_1, T)e_n(S_2, T)$$

and

 $e_n(S, T_1 + T_2) = e_n(S, T_1)e_n(S, T_2)$

for all $S, S_1, S_2, T, T_1, T_2 \in E[n]$. 2 e_n is nondegenerate in each variable. This means that \blacktriangleright if $e_n(S,T) = 1$ for all $T \in E[n]$ then $S = \mathcal{O}$, and \blacktriangleright if $e_n(S,T) = 1$ for all $S \in E[n]$ then $T = \mathcal{O}$.

The Weil pairing (cont.)

Let E be an elliptic curve over K and let n be a positive integer. Assume that the characteristic of K does not divide n. Then there exists a pairing

$$e_n: E[n] \times E[n] \to \mu_n$$

that satisfies the following properties:

- 3 $e_n(T,T) = 1$ for all $T \in E[n]$.
- 4 $e_n(T,S) = e_n(S,T)^{-1}$ for all $S,T \in E[n]$.
- 5 $e_n(\sigma S, \sigma T) = \sigma(e_n(S, T))$ for all automorphisms σ of \overline{K} such that σ is the identity map on the coefficients of E.
- 6 $e_n(u(S), u(T)) = e_n(S, T)^{\deg(u)}$ for all (separable) endomorphisms u of E.

Elliptic curves over finite fields

Let $q = p^e$, where p is an odd prime and $e \ge 1$. Let E/\mathbb{F}_q be an elliptic curve and $a = q + 1 - \#E(\mathbb{F}_q)$. **Theorem (Hasse-Weil)**

 $|a| \le 2\sqrt{q}.$

Theorem The Frobenius endomorphism ϕ_a satisfies the equation

 $\phi_q^2 - [a]\phi_q + [q] = 0.$

Moreover, a is the unique integer such that

 $a \equiv \operatorname{Trace}((\phi_q)_m) \pmod{m}$

for all m coprime to p. The polynomial $X^2 - aX + q$ is called the *characteristic polynomial of the Frobenius*. The integer a is called the *trace of Frobenius*.

0 0 0 0 0

Baby steps-giant steps

<u>Goal</u>: Find order of a point $P \in E(\mathbb{F}_q)$. Let $P \in E(\mathbb{F}_q)$. <u>Baby steps</u>: Compute Q := [q+1]P. Compute [j]P for $j = 0, 1, \ldots, m := \lceil q^{1/4} \rceil$. Giant steps: Compute R := [2m]P, then compute

Q + [k]R, for $k = -m, -(m-1), \dots, m-1, m$

until there is a match $Q + [k]R = \pm [j]P$, for some j. Then $[M]P = \mathcal{O}$, where $M = q + 1 + 2mk \mp j$. Let p_1, \ldots, p_r be the distinct prime divisors of M. (*) Compute $[M/p_i]P$ for all i. If $[M/p_i]P = \mathcal{O}$ for some i, then replace M with M/p_i and repeat (*). Otherwise, M is the order of P.

Schoof's method

Assume p > 3 and

$$E: y^2 = x^3 + Ax + B$$
, with $A, B \in \mathbb{F}_p$.

Recall that $\#E(\mathbb{F}_p) = p + 1 - a$ with $|a| \leq 2\sqrt{p}$. <u>Idea:</u> Compute a modulo small primes ℓ_1, \ldots, ℓ_r such that $\prod_{j=1}^r \ell_j > 4\sqrt{p}$. We can determine a, and hence $\#E(\mathbb{F}_p)$, using the Chinese remainder theorem.

1 Computation of $a \pmod{2}$: We have

> $a \equiv 1 \pmod{2} \iff x^3 + a_4 x + a_6$ is irreducible \pmod{p} $\iff \gcd(x^3 + a_4 x + a_6, x^p - 1) = 1$

Schoof's method (cont.)

2 Computation of $a \pmod{\ell}$, with ℓ odd: For $P = (x_1, y_1) \in E[\ell](\overline{\mathbb{F}_p})$, we have

 $\phi_p^2(P) + [p_\ell]P = [a_\ell]\phi_p(P),$

with $a_{\ell} \equiv a \pmod{\ell}$, $p_{\ell} \equiv p \pmod{\ell}$, and $0 \le a_{\ell} < \ell$, $|p_{\ell}| < \ell/2$. If P has order ℓ then P is a solution of the following system of equations

$$E(x,y) = y^2 - (x^3 + a_4x + a_6) = 0, \quad \psi_\ell(x) = 0.$$

Thus

 $(x^{p^2}, y^{p^2}) + [p_\ell](x, y) = [a_\ell](x^p, y^p) \pmod{E(x, y), \psi_\ell(x)}$. (1) To compute a_ℓ , try all $b \in \{0, 1, \dots, \ell - 1\}$ until we find the unique value b such that (1) holds.

An Example:

Consider $E: y^2 = f(x) = x^3 + 2x + 1$ over \mathbb{F}_{19} . What is $a \pmod{2}$? We have $x^{19} \equiv x^2 + 13x + 14 \pmod{f(x)}$. Then

$$gcd(x^{19} - x, f(x)) = gcd(x^2 + 12x + 14, f(x)) = 1.$$

So $E(\mathbb{F}_{19})$ has no point of order 2. Thus $a \equiv 1 \pmod{2}$.

An Example (cont.):

Consider $E: y^2 = f(x) = x^3 + 2x + 1$ over \mathbb{F}_{19} . What is $a \pmod{5}$? We have $19 \equiv -1 \pmod{5}$. \circ Let

$$\begin{aligned} (x',y') &= (x^{19^2},y^{19^2}) + [-1](x,y) = (x^{19^2},y^{19^2}) + (x,-y), \\ \text{for } (x,y) &\in E[5]. \\ \text{Note } x' &= \left(\frac{f(x)(f(x)^{180}+1)}{x^{361}-x}\right)^2 - x^{361} - x. \\ \text{Find } j \in \{0,1,2,3,4\} \text{ such that} \\ (x',y') &= [j](x^{19},y^{19}) =: (x^p_i,y^p_i). \end{aligned}$$

We can find j subject to the condition $x' - x_j^{19} \equiv 0 \pmod{\psi_5}$. Here,

 $\psi_5 = 5x^{12} + 10x^{10} + 17x^8 + 5x^7 + x^6 + 9x^5 + 12x^4 + 2x^3 + 5x^2 + 8x + 8.$ $x_2^{19} = \left(\frac{3x^{38} + 2}{2y^{19}}\right)^2 - 2x^{19}.$

An Example: (cont.)

It can be shown that $x' - x^{19} \not\equiv 0 \pmod{\psi_5}$, but

$$x' = \left(\frac{f(x)(f(x)^{180} + 1)}{x^{361} - x}\right)^2 - x^{361} - x \equiv \left(\frac{3x^{38} + 2}{2y^{19}}\right)^2 - 2x^{19} = x_2^{19} \pmod{\psi_5}$$

Thus, $a \equiv \pm 2 \pmod{5}$.

 \circ To determine the sign, look at *y*-coordinates. It turns out that

 $(y' + y_2^{\overline{19}})/y \equiv 0 \pmod{\psi_3}.$

That is, $(x', y') = (x_2^{19}, -y_2^{19}) = [-2](x^{19}, y^{19}).$ So $a \equiv -2 \pmod{5}.$

An Example (cont.)

Consider $E: y^2 = f(x) = x^3 + 2x + 1$ over \mathbb{F}_{19} . We have

$$\psi_3(x) = 3x^4 + 12x^2 + 12x - 4.$$

Note that

$$\psi_3(8) = 0 \pmod{19}.$$

```
The point (8,4) \in E(\mathbb{F}_{19}) has order 3.
Thus
```

$$19 + 1 - a = \#E(\mathbb{F}_{19}) \equiv 0 \pmod{3}.$$

0 0 0 0

So $a \equiv 2 \pmod{3}$. We have

 $a \equiv 1 \pmod{2}, \quad a \equiv 2 \pmod{3}, a \equiv 3 \pmod{5}.$ Thus, $a \equiv 23 \pmod{30}$. Since $|a| < 2\sqrt{19} < 9$, we have a = -7. Thus $\#E(\mathbb{F}_{19}) = 19 + 1 - a = 27.$

Schoof algorithm (Given: $E: y^2 = x^3 + Ax + B$ over \mathbb{F}_p)

Start with a set of primes $S = \{2, 3, ..., L\}$ $(p \notin S)$ such that $\prod_{\ell \in S} \ell > 4\sqrt{p}$. To compute a_{ℓ} for odd $\ell \in S$, do:

- (a) Let $p_{\ell} \equiv p \pmod{\ell}$ with $|p_{\ell}| \leq \ell/2$.
- (b) Compute the x-coordinate x' of

$$(x', y') = (x^{p^2}, y^{p^2}) + [p_\ell](x, y) \pmod{\psi_\ell}.$$

- (d) If all j with $1 \le j \le (\ell 1)/2$ have been tried without success, let $w^2 \equiv p \pmod{\ell}$. If w does not exist, then $a \equiv 0 \pmod{\ell}$.
- (e) If gcd(numerator(x^p x_w), ψ_ℓ) = 1, then a ≡ 0 (mod ℓ). Otherwise compute gcd(numerator(y^p y_w)/y, ψ_ℓ). If gcd is not 1, then a ≡ 2w (mod ℓ). Otherwise, a ≡ -2w (mod ℓ).

Constructing the Weil pairing

Divisors

Let E be an elliptic curve over K.

1. A divisor D on E is an element of the free abelian group Div(E) generated by symbols [P], where $P \in E(\overline{K})$; that is,

 $D = \sum_{P \in E} n_P[P], \quad n_P \in \mathbb{Z}, n_P = 0, \text{ for all but finitely many } P.$

2. The *degree* of a divisor $D = \sum_{P \in E} n_P[P]$ is

$$\deg(D) = \sum_{P \in E} n_P.$$

3. <u>Fact</u>: The divisors of degree 0 form a subgroup $\text{Div}^0(E)$ of Div(E).

Divisors

Let E be an elliptic curve over K. Let $\overline{K}(E)$ denote the function field of E.

4. For $P \in E(\overline{K})$, there is a function u_P , the *uniformizer at* P such that

 $u_P(P) = 0$ and every $f \in \overline{K}(E)$ can be written as $f = u_P^r g$.

The order of f at P is $r =: \operatorname{ord}_P(f)$. $\operatorname{ord}_P(f) > 0$ means P is a zero of f $\operatorname{ord}_P(f) < 0$ means P is a pole of f5. For $f \in \overline{K}(E)$ $(f \not\equiv 0)$, the divisor of f is

 $\operatorname{div}(f) = \sum_{P \in E} \operatorname{ord}_P(f)[P] \in \operatorname{Div}(E).$

Divisors

Let E be an elliptic curve over K. Let $\overline{K}(E)$ denote the function field of E.

- 6. $f \in \overline{K}(E)$ has only finitely many zeros and poles.
- 7. $\operatorname{deg}(\operatorname{div}(f)) = 0$
- 8. $\operatorname{div}(f) = 0$ if and only if f is constant.
- 9. A divisor $D \in \text{Div}(E)$ is called *principal* if D = div(f) for some f.
- 10. $D_1, D_2 \in Div(E)$ are said to be *linearly equivalent*, written $D_1 \sim D_2$, if

 $D_1 - D_2 = \operatorname{div}(f)$, for some f.

11. $\operatorname{Pic}(E) = \operatorname{Div}(E)/(\operatorname{principal divisors});$ $\operatorname{Pic}^{0}(E) = \operatorname{Div}^{0}(E)/(\operatorname{principal divisors})$

Riemann-Roch

Definition A divisor $D = \sum_{P \in E} a_P[P]$ is said to be positive (written " $D \ge 0$ ") if $a_P \ge 0$ for all $P \in E$. Let $D \in \text{Div}(E)$. Define

 $\mathcal{L}(D) := \{ f \in \overline{K}(E)^* : \operatorname{div}(f) + D \ge 0 \} \cup \{ 0 \}.$

Note that $\dim_{\overline{K}} \mathcal{L}(D) < \infty$. Remarks:

 $\circ \mathcal{L}(0) = \overline{K}.$ $\circ D_1 \sim D_2 \text{ implies } \mathcal{L}(D_1) = \mathcal{L}(D_2).$

Riemann-Roch Theorem

 $\dim_{\overline{K}} \mathcal{L}(D) = \deg(D),$ for all divisors $D \in \operatorname{Div}(E)$ with $\deg D \ge 0$.

Consequences

Corollary Let $P, Q \in E$. Then $(P) \sim (Q)$ if and only P = Q.

Proposition

Let E/K be an elliptic curve.

- a For every $D \in \text{Div}^0(E)$, there exists a unique $P \in E$ such that $D \sim (P) (\mathcal{O})$. Define $\sigma : \text{Div}^0(E) \to E$ to be the map that sends D to its associated P.
- b The map σ is surjective.
- c Let $D_1, D_2 \in \operatorname{Div}^0(E)$. Then

 $\sigma(D_1) = \sigma(D_2)$ if and only if $D_1 \sim D_2$.

Proposition (cont.)

d Thus σ induces a bijection of sets (also denoted by σ),

 $\sigma : \operatorname{Pic}^0(E) \to E,$

with inverse given by

 $\kappa: E \to \operatorname{Pic}^{0}(E), \quad P \mapsto (\text{divisor class of } (P) - (\mathcal{O})).$

(e) If E is given by a Weierstrass equation then the "geometric group law" on E and the "algebraic group law" on $\operatorname{Pic}^{0}(E)$ using σ are the same.

Corollary

Let $D = \sum_{P \in E} n_P[P] \in \text{Div}(E)$. Then D is a principal divisor if and only if $\sum_{P \in E} n_P = 0$ and $\sum_{P \in E} [n_P]P = \mathcal{O}$.

Weil pairing construction

Let E/K be an elliptic curve. Assume that $char(K) \nmid n$. Let $T \in E[n]$. Then there is a function f such that

 $\operatorname{div}(f) = n(T) - n(\mathcal{O}).$

Similarly, if we let $T' \in E$ with [n]T' = T, then there is a function g such that

$$\operatorname{div}(g) = \sum_{R \in E[n]} (T' + R) - (R).$$

Then

 $\operatorname{div}(f \circ [n]) = \operatorname{div}(g^n).$ After scaling, we may suppose $f \circ [n] = g^n$. If $S \in E[n]$, then for any $X \in E$, $g(X + S)^n = f([n]X + [n]S) = f([n]X) = g(X)^n.$ We now define $e_n : E[n] \times E[n] \to \mu_n$ by $e_n(S,T) := \frac{g(X + S)}{g(X)}.$