# Elliptic curves over finite fields and the Weil pairing 

Jerome T. Dimabayao ${ }^{\dagger}$

${ }^{\dagger}$ jdimabayao@math.upd.edu.ph

## Division Polynomials

Start with variables $A$ and $B$. Define $\psi_{m} \in \mathbb{Z}[x, y, A, B]$ by

$$
\begin{aligned}
\psi_{0} & =0 \\
\psi_{1} & =1 \\
\psi_{2} & =2 y \\
\psi_{3} & =3 x^{4}+6 A x^{2}+12 B x-A^{2} \\
\psi_{4} & =4 y\left(x^{6}+5 A x^{4}+20 B x^{3}-5 A^{2} x^{2}-4 A B x-8 B^{2}-A^{3}\right) \\
\psi_{2 m+1} & =\psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3}, \text { for } m \geq 2 \\
\psi_{2 m} & =(2 y)^{-1}\left(\psi_{m}\right)\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right), \text { for } m \geq 3 .
\end{aligned}
$$

We call $\psi_{m}$ the $m$ th division polynomial.
Fact:

1. $\psi_{2 m+1} \in \mathbb{Z}\left[x, y^{2}, A, B\right]$
2. $\psi_{2 m} \in 2 y \mathbb{Z}\left[x, y^{2}, A, B\right]$

## Torsion Points of $E$

Let $E: y^{2}=x^{3}+A x+B$, where $A, B \in K$.
Then

1. $\psi_{2 m+1} \in \mathbb{Z}[x, A, B]$
2. $\psi_{2 m} \in 2 y \mathbb{Z}[x, A, B]$
3. The roots $\psi_{2 m+1}$ are the $x$-coordinates of points in $E[2 m+1]$ (except $\mathcal{O}$ )
4. For $m>1$, the roots $y^{-1} \psi_{2 m}$ are the $x$-coordinates of points in $E[2 m]$ (except $E[2]$ )
5. If $P=(x, y) \in E(K)$, then

$$
n P=\left(\frac{\phi_{n}(x)}{\psi_{n}^{2}(x)}, \frac{\omega_{n}(x, y)}{\psi_{n}^{3}(x, y)}\right)
$$

where

$$
\begin{aligned}
& \phi_{n}=x \psi_{n}^{2}-\psi_{n+1} \psi_{n-1} \\
& \omega_{n}=(4 y)^{-1}\left(\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}\right) .
\end{aligned}
$$

## The Weil pairing

Let $E$ be an elliptic curve over $K$ and let $n$ be a positive integer. Assume that the characteristic of $K$ does not divide $n$. Then there exists a pairing

$$
e_{n}: E[n] \times E[n] \rightarrow \mu_{n},
$$

that satisfies the following properties:
$1 e_{n}$ is bilinear in each variable. This means that

$$
e_{n}\left(S_{1}+S_{2}, T\right)=e_{n}\left(S_{1}, T\right) e_{n}\left(S_{2}, T\right)
$$

and

$$
e_{n}\left(S, T_{1}+T_{2}\right)=e_{n}\left(S, T_{1}\right) e_{n}\left(S, T_{2}\right)
$$

for all $S, S_{1}, S_{2}, T, T_{1}, T_{2} \in E[n]$.
$2 e_{n}$ is nondegenerate in each variable. This means that

- if $e_{n}(S, T)=1$ for all $T \in E[n]$ then $S=\mathcal{O}$, and
- if $e_{n}(S, T)=1$ for all $S \in E[n]$ then $T=\mathcal{O}$.


## The Weil pairing (cont.)

Let $E$ be an elliptic curve over $K$ and let $n$ be a positive integer. Assume that the characteristic of $K$ does not divide $n$. Then there exists a pairing

$$
e_{n}: E[n] \times E[n] \rightarrow \mu_{n},
$$

that satisfies the following properties:
$3 e_{n}(T, T)=1$ for all $T \in E[n]$.
$4 e_{n}(T, S)=e_{n}(S, T)^{-1}$ for all $S, T \in E[n]$.
$5 e_{n}(\sigma S, \sigma T)=\sigma\left(e_{n}(S, T)\right)$ for all automorphisms $\sigma$ of $\bar{K}$ such that $\sigma$ is the identity map on the coefficients of $E$.
$6 e_{n}(u(S), u(T))=e_{n}(S, T)^{\operatorname{deg}(u)}$ for all (separable) endomorphisms $u$ of $E$.

## Elliptic curves over finite fields

Let $q=p^{e}$, where $p$ is an odd prime and $e \geq 1$.
Let $E / \mathbb{F}_{q}$ be an elliptic curve and $a=q+1-\# E\left(\mathbb{F}_{q}\right)$.
Theorem (Hasse-Weil)

$$
|a| \leq 2 \sqrt{q} .
$$

## Theorem

The Frobenius endomorphism $\phi_{q}$ satisfies the equation

$$
\phi_{q}^{2}-[a] \phi_{q}+[q]=0 .
$$

Moreover, $a$ is the unique integer such that

$$
a \equiv \operatorname{Trace}\left(\left(\phi_{q}\right)_{m}\right) \quad(\bmod m)
$$

for all $m$ coprime to $p$.
The polynomial $X^{2}-a X+q$ is called the characteristic polynomial of the Frobenius. The integer $a$ is called the trace of Frobenius.

## Baby steps-giant steps

Goal: Find order of a point $P \in E\left(\mathbb{F}_{q}\right)$.
Let $P \in E\left(\mathbb{F}_{q}\right)$.
Baby steps: Compute $Q:=[q+1] P$. Compute $[j] P$ for
$\overline{j=0,1, \ldots, m:=\left\lceil q^{1 / 4}\right\rceil \text {. } . . . . . . ~}$
Giant steps: Compute $R:=[2 m] P$, then compute

$$
Q+[k] R, \text { for } k=-m,-(m-1), \ldots, m-1, m
$$

until there is a match $Q+[k] R= \pm[j] P$, for some $j$.
Then $[M] P=\mathcal{O}$, where $M=q+1+2 m k \mp j$.
Let $p_{1}, \ldots, p_{r}$ be the distinct prime divisors of $M$.
(*) Compute $\left[M / p_{i}\right] P$ for all $i$.
If $\left[M / p_{i}\right] P=\mathcal{O}$ for some $i$, then replace $M$ with $M / p_{i}$ and repeat (*). Otherwise, $M$ is the order of $P$.

## Schoof's method

Assume $p>3$ and

$$
E: y^{2}=x^{3}+A x+B, \text { with } A, B \in \mathbb{F}_{p} .
$$

Recall that $\# E\left(\mathbb{F}_{p}\right)=p+1-a$ with $|a| \leq 2 \sqrt{p}$. Idea: Compute $a$ modulo small primes $\ell_{1}, \ldots, \ell_{r}$ such that $\prod_{j=1}^{r} \ell_{j}>4 \sqrt{p}$. We can determine $a$, and hence $\# E\left(\mathbb{F}_{p}\right)$, using the Chinese remainder theorem.

1 Computation of $a(\bmod 2)$ :
We have

$$
\begin{aligned}
a \equiv 1 \quad(\bmod 2) & \Longleftrightarrow x^{3}+a_{4} x+a_{6} \text { is irreducible }(\bmod p) \\
& \Longleftrightarrow \operatorname{gcd}\left(x^{3}+a_{4} x+a_{6}, x^{p}-1\right)=1
\end{aligned}
$$

## Schoof's method (cont.)

2 Computation of $a(\bmod \ell)$, with $\ell$ odd: For $P=\left(x_{1}, y_{1}\right) \in E[\ell]\left(\overline{\mathbb{F}_{p}}\right)$, we have

$$
\phi_{p}^{2}(P)+\left[p_{\ell}\right] P=\left[a_{\ell}\right] \phi_{p}(P)
$$

with $a_{\ell} \equiv a(\bmod \ell), p_{\ell} \equiv p(\bmod \ell)$, and $0 \leq a_{\ell}<\ell,\left|p_{\ell}\right|<\ell / 2$. If $P$ has order $\ell$ then $P$ is a solution of the following system of equations

$$
E(x, y)=y^{2}-\left(x^{3}+a_{4} x+a_{6}\right)=0, \quad \psi_{\ell}(x)=0 .
$$

Thus

$$
\begin{equation*}
\left(x^{p^{2}}, y^{p^{2}}\right)+\left[p_{\ell}\right](x, y)=\left[a_{\ell}\right]\left(x^{p}, y^{p}\right) \quad\left(\bmod E(x, y), \psi_{\ell}(x)\right) . \tag{1}
\end{equation*}
$$

To compute $a_{\ell}$, try all $b \in\{0,1, \ldots, \ell-1\}$ until we find the unique value $b$ such that (1) holds.

## An Example:

Consider $E: y^{2}=f(x)=x^{3}+2 x+1$ over $\mathbb{F}_{19}$.
What is $a(\bmod 2)$ ?
We have $x^{19} \equiv x^{2}+13 x+14(\bmod f(x))$.
Then

$$
\operatorname{gcd}\left(x^{19}-x, f(x)\right)=\operatorname{gcd}\left(x^{2}+12 x+14, f(x)\right)=1 .
$$

So $E\left(\mathbb{F}_{19}\right)$ has no point of order 2 .
Thus $a \equiv 1(\bmod 2)$.

An Example (cont.):
Consider $E: y^{2}=f(x)=x^{3}+2 x+1$ over $\mathbb{F}_{19}$.
What is $a(\bmod 5)$ ?
We have $19 \equiv-1(\bmod 5)$.

- Let

$$
\left(x^{\prime}, y^{\prime}\right)=\left(x^{19^{2}}, y^{19^{2}}\right)+[-1](x, y)=\left(x^{19^{2}}, y^{19^{2}}\right)+(x,-y),
$$

for $(x, y) \in E[5]$.
Note $x^{\prime}=\left(\frac{f(x)\left(f(x)^{180}+1\right)}{x^{361}-x}\right)^{2}-x^{361}-x$.

- Find $j \in\{0,1,2,3,4\}$ such that

$$
\left(x^{\prime}, y^{\prime}\right)=[j]\left(x^{19}, y^{19}\right)=:\left(x_{j}^{p}, y_{j}^{p}\right) .
$$

We can find $j$ subject to the condition $x^{\prime}-x_{j}^{19} \equiv 0\left(\bmod \psi_{5}\right)$. Here,

$$
\begin{aligned}
\psi_{5} & =5 x^{12}+10 x^{10}+17 x^{8}+5 x^{7}+x^{6}+9 x^{5}+12 x^{4}+2 x^{3}+5 x^{2}+8 x+8 \\
x_{2}^{19} & =\left(\frac{3 x^{38}+2}{2 y^{19}}\right)^{2}-2 x^{19}
\end{aligned}
$$

## An Example: (cont.)

It can be shown that $x^{\prime}-x^{19} \not \equiv 0\left(\bmod \psi_{5}\right)$, but
$x^{\prime}=\left(\frac{f(x)\left(f(x)^{180}+1\right)}{x^{361}-x}\right)^{2}-x^{361}-x \equiv\left(\frac{3 x^{38}+2}{2 y^{19}}\right)^{2}-2 x^{19}=x_{2}^{19} \quad\left(\bmod \psi_{5}\right)$.
Thus, $a \equiv \pm 2(\bmod 5)$.

- To determine the sign, look at $y$-coordinates. It turns out that

$$
\left(y^{\prime}+y_{2}^{19}\right) / y \equiv 0 \quad\left(\bmod \psi_{3}\right)
$$

That is, $\left(x^{\prime}, y^{\prime}\right)=\left(x_{2}^{19},-y_{2}^{19}\right)=[-2]\left(x^{19}, y^{19}\right)$.
So $a \equiv-2(\bmod 5)$.

## An Example (cont.)

Consider $E: y^{2}=f(x)=x^{3}+2 x+1$ over $\mathbb{F}_{19}$.
We have

$$
\psi_{3}(x)=3 x^{4}+12 x^{2}+12 x-4
$$

Note that

$$
\psi_{3}(8)=0 \quad(\bmod 19) .
$$

The point $(8,4) \in E\left(\mathbb{F}_{19}\right)$ has order 3 .
Thus

$$
19+1-a=\# E\left(\mathbb{F}_{19}\right) \equiv 0 \quad(\bmod 3) .
$$

So $a \equiv 2(\bmod 3)$.
We have

$$
a \equiv 1 \quad(\bmod 2), \quad a \equiv 2 \quad(\bmod 3), a \equiv 3 \quad(\bmod 5) .
$$

Thus, $a \equiv 23(\bmod 30)$.
Since $|a|<2 \sqrt{19}<9$, we have $a=-7$. Thus

$$
\# E\left(\mathbb{F}_{19}\right)=19+1-a=27
$$

## Schoof algorithm (Given: $E: y^{2}=x^{3}+A x+B$ over $\mathbb{F}_{p}$ )

Start with a set of primes $S=\{2,3, \ldots, L\}(p \notin S)$ such that $\prod_{\ell \in S} \ell>4 \sqrt{p}$. To compute $a_{\ell}$ for odd $\ell \in S$, do:
(a) Let $p_{\ell} \equiv p(\bmod \ell)$ with $\left|p_{\ell}\right| \leq \ell / 2$.
(b) Compute the $x$-coordinate $x^{\prime}$ of

$$
\left(x^{\prime}, y^{\prime}\right)=\left(x^{p^{2}}, y^{p^{2}}\right)+\left[p_{\ell}\right](x, y) \quad\left(\bmod \psi_{\ell}\right) .
$$

(c) For $j=1,2, \ldots,(\ell-1) / 2$, do:
(i) Compute $x$-coordinate $x_{j}$ of $\left(x_{j}, y_{j}\right)=[j](x, y)$.
(ii) If $x^{\prime}-x_{j}^{p} \equiv 0\left(\bmod \psi_{\ell}\right)$, go to (iii). Otherwise, try next $j$ in (c). If all values $1 \leq j \leq(\ell-1) / 2$ have been tried, go to step $(\mathrm{d})$.
(iii) Compute $y^{\prime}$ and $y_{j}$. If $\left(y^{\prime}-y_{j}^{p}\right) / y \equiv 0\left(\bmod \psi_{\ell}\right)$, then $a \equiv j$ $(\bmod \ell)$. If not, then $a \equiv-j(\bmod \ell)$.
(d) If all $j$ with $1 \leq j \leq(\ell-1) / 2$ have been tried without success, let $w^{2} \equiv p$ $(\bmod \ell)$. If $w$ does not exist, then $a \equiv 0(\bmod \ell)$.
(e) If $\operatorname{gcd}\left(\right.$ numerator $\left.\left(x^{p}-x_{w}\right), \psi_{\ell}\right)=1$, then $a \equiv 0(\bmod \ell)$. Otherwise compute $\operatorname{gcd}\left(\right.$ numerator $\left.\left(y^{p}-y_{w}\right) / y, \psi_{\ell}\right)$. If $\operatorname{gcd}$ is not 1 , then $a \equiv 2 w(\bmod \ell)$. Otherwise, $a \equiv-2 w(\bmod \ell)$.

## Constructing the Weil pairing

## Divisors

Let $E$ be an elliptic curve over $K$.

1. A divisor $D$ on $E$ is an element of the free abelian group $\operatorname{Div}(E)$ generated by symbols $[P]$, where $P \in E(\bar{K})$; that is,

$$
D=\sum_{P \in E} n_{P}[P], \quad n_{P} \in \mathbb{Z}, n_{P}=0, \text { for all but finitely many } P .
$$

2. The degree of a divisor $D=\sum_{P \in E} n_{P}[P]$ is

$$
\operatorname{deg}(D)=\sum_{P \in E} n_{P}
$$

3. Fact: The divisors of degree 0 form a subgroup $\operatorname{Div}^{0}(E)$ of $\operatorname{Div}(E)$.

## Divisors

Let $E$ be an elliptic curve over $K$. Let $\bar{K}(E)$ denote the function field of $E$.
4. For $P \in E(\bar{K})$, there is a function $u_{P}$, the uniformizer at $P$ such that

$$
u_{P}(P)=0 \text { and every } f \in \bar{K}(E) \text { can be written as } f=u_{P}^{r} g .
$$

The order of $f$ at $P$ is $r=: \operatorname{ord}_{P}(f)$.
$\operatorname{ord}_{P}(f)>0$ means $P$ is a zero of $f$
$\operatorname{ord}_{P}(f)<0$ means $P$ is a pole of $f$
5. For $f \in \bar{K}(E)(f \not \equiv 0)$, the divisor of $f$ is

$$
\operatorname{div}(f)=\sum_{P \in E} \operatorname{ord}_{P}(f)[P] \in \operatorname{Div}(E)
$$

## Divisors

Let $E$ be an elliptic curve over $K$. Let $\bar{K}(E)$ denote the function field of $E$.
6. $f \in \bar{K}(E)$ has only finitely many zeros and poles.
7. $\operatorname{deg}(\operatorname{div}(f))=0$
8. $\operatorname{div}(f)=0$ if and only if $f$ is constant.
9. A divisor $D \in \operatorname{Div}(E)$ is called principal if $D=\operatorname{div}(f)$ for some $f$.
10. $D_{1}, D_{2} \in \operatorname{Div}(E)$ are said to be linearly equivalent, written $D_{1} \sim D_{2}$, if

$$
D_{1}-D_{2}=\operatorname{div}(f), \text { for some } f \text {. }
$$

11. $\operatorname{Pic}(E)=\operatorname{Div}(E) /($ principal divisors);
$\operatorname{Pic}^{0}(E)=\operatorname{Div}^{0}(E) /($ principal divisors $)$

## Riemann-Roch

## Definition

A divisor $D=\sum_{P \in E} a_{P}[P]$ is said to be positive (written " $D \geq 0$ ") if $a_{P} \geq 0$ for all $P \in E$.
Let $D \in \operatorname{Div}(E)$. Define

$$
\mathcal{L}(D):=\left\{f \in \bar{K}(E)^{*}: \operatorname{div}(f)+D \geq 0\right\} \cup\{0\} .
$$

Note that $\operatorname{dim}_{\bar{K}} \mathcal{L}(D)<\infty$.
Remarks:

- $\mathcal{L}(0)=\bar{K}$.
- $D_{1} \sim D_{2}$ implies $\mathcal{L}\left(D_{1}\right)=\mathcal{L}\left(D_{2}\right)$.

Riemann-Roch Theorem

$$
\operatorname{dim}_{\bar{K}} \mathcal{L}(D)=\operatorname{deg}(D)
$$

for all divisors $D \in \operatorname{Div}(E)$ with $\operatorname{deg} D \geq 0$.

Consequences

Corollary
Let $P, Q \in E$. Then $(P) \sim(Q)$ if and only $P=Q$.

## Proposition

Let $E / K$ be an elliptic curve.
a For every $D \in \operatorname{Div}^{0}(E)$, there exists a unique $P \in E$ such that $D \sim(P)-(\mathcal{O})$.
Define $\sigma: \operatorname{Div}^{0}(E) \rightarrow E$ to be the map that sends $D$ to its associated $P$.
b The map $\sigma$ is surjective.
c Let $D_{1}, D_{2} \in \operatorname{Div}^{0}(E)$. Then

$$
\sigma\left(D_{1}\right)=\sigma\left(D_{2}\right) \quad \text { if and only if } \quad D_{1} \sim D_{2} .
$$

## Proposition (cont.)

d Thus $\sigma$ induces a bijection of sets (also denoted by $\sigma$ ),

$$
\sigma: \operatorname{Pic}^{0}(E) \rightarrow E,
$$

with inverse given by

$$
\kappa: E \rightarrow \operatorname{Pic}^{0}(E), \quad P \mapsto(\text { divisor class of }(P)-(\mathcal{O})) .
$$

(e) If $E$ is given by a Weierstrass equation then the "geometric group law" on $E$ and the "algebraic group law" on $\operatorname{Pic}^{0}(E)$ using $\sigma$ are the same.

## Corollary

Let $D=\sum_{P \in E} n_{P}[P] \in \operatorname{Div}(E)$. Then $D$ is a principal divisor if and only if $\sum_{P \in E} n_{P}=0 \quad$ and $\quad \sum_{P \in E}\left[n_{P}\right] P=\mathcal{O}$.

## Weil pairing construction

Let $E / K$ be an elliptic curve. Assume that $\operatorname{char}(K) \nmid n$.
Let $T \in E[n]$. Then there is a function $f$ such that

$$
\operatorname{div}(f)=n(T)-n(\mathcal{O})
$$

Similarly, if we let $T^{\prime} \in E$ with $[n] T^{\prime}=T$, then there is a function $g$ such that

$$
\operatorname{div}(g)=\sum_{R \in E[n]}\left(T^{\prime}+R\right)-(R) .
$$

Then

$$
\operatorname{div}(f \circ[n])=\operatorname{div}\left(g^{n}\right) .
$$

After scaling, we may suppose $f \circ[n]=g^{n}$. If $S \in E[n]$, then for any $X \in E$,

$$
g(X+S)^{n}=f([n] X+[n] S)=f([n] X)=g(X)^{n}
$$

We now define $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$ by

$$
e_{n}(S, T):=\frac{g(X+S)}{g(X)}
$$

