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Division Polynomials
Start with variables A and B. Define ψm ∈ Z[x, y,A,B] by

ψ0 = 0
ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1, for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1), for m ≥ 3.

We call ψm the mth division polynomial.
Fact:

1. ψ2m+1 ∈ Z[x, y2, A,B]
2. ψ2m ∈ 2yZ[x, y2, A,B]



Torsion Points of E

Let E : y2 = x3 +Ax+B, where A,B ∈ K.
Then

1. ψ2m+1 ∈ Z[x,A,B]
2. ψ2m ∈ 2yZ[x,A,B]
3. The roots ψ2m+1 are the x-coordinates of points in E[2m+ 1]

(except O)
4. For m > 1, the roots y−1ψ2m are the x-coordinates of points in
E[2m] (except E[2])

5. If P = (x, y) ∈ E(K), then

nP =
(
ϕn(x)
ψ2

n(x) ,
ωn(x, y)
ψ3

n(x, y)

)
,

where

ϕn = xψ2
n − ψn+1ψn−1

ωn = (4y)−1(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1).



The Weil pairing
Let E be an elliptic curve over K and let n be a positive integer.
Assume that the characteristic of K does not divide n. Then there
exists a pairing

en : E[n] × E[n] → µn,

that satisfies the following properties:
1 en is bilinear in each variable. This means that

en(S1 + S2, T ) = en(S1, T )en(S2, T )

and
en(S, T1 + T2) = en(S, T1)en(S, T2)

for all S, S1, S2, T, T1, T2 ∈ E[n].
2 en is nondegenerate in each variable. This means that

▶ if en(S, T ) = 1 for all T ∈ E[n] then S = O, and
▶ if en(S, T ) = 1 for all S ∈ E[n] then T = O.



The Weil pairing (cont.)

Let E be an elliptic curve over K and let n be a positive integer.
Assume that the characteristic of K does not divide n. Then there
exists a pairing

en : E[n] × E[n] → µn,

that satisfies the following properties:
3 en(T, T ) = 1 for all T ∈ E[n].
4 en(T, S) = en(S, T )−1 for all S, T ∈ E[n].
5 en(σS, σT ) = σ(en(S, T )) for all automorphisms σ of K such that
σ is the identity map on the coefficients of E.

6 en(u(S), u(T )) = en(S, T )deg(u) for all (separable) endomorphisms
u of E.



Elliptic curves over finite fields
Let q = pe, where p is an odd prime and e ≥ 1.
Let E/Fq be an elliptic curve and a = q + 1 − #E(Fq).
Theorem (Hasse-Weil)

|a| ≤ 2√
q.

Theorem
The Frobenius endomorphism ϕq satisfies the equation

ϕ2
q − [a]ϕq + [q] = 0.

Moreover, a is the unique integer such that

a ≡ Trace((ϕq)m) (mod m)

for all m coprime to p.
The polynomial X2 − aX + q is called the characteristic polynomial of the
Frobenius. The integer a is called the trace of Frobenius.



Baby steps-giant steps

Goal: Find order of a point P ∈ E(Fq).
Let P ∈ E(Fq).
Baby steps: Compute Q := [q + 1]P . Compute [j]P for
j = 0, 1, . . . ,m := ⌈q1/4⌉.
Giant steps: Compute R := [2m]P , then compute

Q+ [k]R, for k = −m,−(m− 1), . . . ,m− 1,m

until there is a match Q+ [k]R = ±[j]P , for some j.
Then [M ]P = O, where M = q + 1 + 2mk ∓ j.
Let p1, . . . , pr be the distinct prime divisors of M .
(*) Compute [M/pi]P for all i.
If [M/pi]P = O for some i, then replace M with M/pi and repeat (*).
Otherwise, M is the order of P .



Schoof’s method

Assume p > 3 and

E : y2 = x3 +Ax+B, with A,B ∈ Fp.

Recall that #E(Fp) = p+ 1 − a with |a| ≤ 2√
p.

Idea: Compute a modulo small primes ℓ1, . . . , ℓr such that∏r
j=1 ℓj > 4√

p. We can determine a, and hence #E(Fp), using the
Chinese remainder theorem.

1 Computation of a (mod 2):
We have

a ≡ 1 (mod 2) ⇐⇒ x3 + a4x+ a6 is irreducible (mod p)
⇐⇒ gcd(x3 + a4x+ a6, x

p − 1) = 1



Schoof’s method (cont.)

2 Computation of a (mod ℓ), with ℓ odd:
For P = (x1, y1) ∈ E[ℓ](Fp), we have

ϕ2
p(P ) + [pℓ]P = [aℓ]ϕp(P ),

with aℓ ≡ a (mod ℓ), pℓ ≡ p (mod ℓ), and 0 ≤ aℓ < ℓ, |pℓ| < ℓ/2.
If P has order ℓ then P is a solution of the following system of
equations

E(x, y) = y2 − (x3 + a4x+ a6) = 0, ψℓ(x) = 0.

Thus

(xp2
, yp2) + [pℓ](x, y) = [aℓ](xp, yp) (mod E(x, y), ψℓ(x)). (1)

To compute aℓ, try all b ∈ {0, 1, . . . , ℓ− 1} until we find the unique
value b such that (1) holds.



An Example:

Consider E : y2 = f(x) = x3 + 2x+ 1 over F19.
What is a (mod 2)?
We have x19 ≡ x2 + 13x+ 14 (mod f(x)).
Then

gcd(x19 − x, f(x)) = gcd(x2 + 12x+ 14, f(x)) = 1.

So E(F19) has no point of order 2.
Thus a ≡ 1 (mod 2).



An Example (cont.):

Consider E : y2 = f(x) = x3 + 2x+ 1 over F19.
What is a (mod 5)?
We have 19 ≡ −1 (mod 5).

◦ Let
(x′, y′) = (x192

, y192) + [−1](x, y) = (x192
, y192) + (x,−y),

for (x, y) ∈ E[5].
Note x′ =

(
f(x)(f(x)180+1)

x361−x

)2
− x361 − x.

◦ Find j ∈ {0, 1, 2, 3, 4} such that
(x′, y′) = [j](x19, y19) =: (xp

j , y
p
j ).

We can find j subject to the condition x′ − x19
j ≡ 0 (mod ψ5).

Here,
ψ5 = 5x12 + 10x10 + 17x8 + 5x7 + x6 + 9x5 + 12x4 + 2x3 + 5x2 + 8x+ 8.

x19
2 =

(
3x38 + 2

2y19

)2

− 2x19.



An Example: (cont.)

It can be shown that x′ − x19 ̸≡ 0 (mod ψ5), but

x′ =
(
f(x)(f(x)180 + 1)

x361 − x

)2

−x361−x ≡
(

3x38 + 2
2y19

)2

−2x19 = x19
2 (mod ψ5).

Thus, a ≡ ±2 (mod 5).
◦ To determine the sign, look at y-coordinates. It turns out that

(y′ + y19
2 )/y ≡ 0 (mod ψ3).

That is, (x′, y′) = (x19
2 ,−y19

2 ) = [−2](x19, y19).
So a ≡ −2 (mod 5).



An Example (cont.)

Consider E : y2 = f(x) = x3 + 2x+ 1 over F19.
We have

ψ3(x) = 3x4 + 12x2 + 12x− 4.
Note that

ψ3(8) = 0 (mod 19).
The point (8, 4) ∈ E(F19) has order 3.
Thus

19 + 1 − a = #E(F19) ≡ 0 (mod 3).
So a ≡ 2 (mod 3).
We have

a ≡ 1 (mod 2), a ≡ 2 (mod 3), a ≡ 3 (mod 5).
Thus, a ≡ 23 (mod 30).
Since |a| < 2

√
19 < 9, we have a = −7. Thus

#E(F19) = 19 + 1 − a = 27.



Schoof algorithm (Given: E : y2 = x3 + Ax + B over Fp)
Start with a set of primes S = {2, 3, . . . , L} (p ̸∈ S) such that

∏
ℓ∈S

ℓ > 4√
p.

To compute aℓ for odd ℓ ∈ S, do:
(a) Let pℓ ≡ p (mod ℓ) with |pℓ| ≤ ℓ/2.
(b) Compute the x-coordinate x′ of

(x′, y′) = (xp2
, yp2

) + [pℓ](x, y) (mod ψℓ).

(c) For j = 1, 2, . . . , (ℓ− 1)/2, do:
(i) Compute x-coordinate xj of (xj , yj) = [j](x, y).
(ii) If x′ − xp

j ≡ 0 (mod ψℓ), go to (iii). Otherwise, try next j in (c).
If all values 1 ≤ j ≤ (ℓ− 1)/2 have been tried, go to step (d).

(iii) Compute y′ and yj . If (y′ − yp
j )/y ≡ 0 (mod ψℓ), then a ≡ j

(mod ℓ). If not, then a ≡ −j (mod ℓ).
(d) If all j with 1 ≤ j ≤ (ℓ− 1)/2 have been tried without success, let w2 ≡ p

(mod ℓ). If w does not exist, then a ≡ 0 (mod ℓ).
(e) If gcd(numerator(xp − xw), ψℓ) = 1, then a ≡ 0 (mod ℓ). Otherwise compute

gcd(numerator(yp − yw)/y, ψℓ). If gcd is not 1, then a ≡ 2w (mod ℓ).
Otherwise, a ≡ −2w (mod ℓ).



Constructing the Weil pairing



Divisors

Let E be an elliptic curve over K.
1. A divisor D on E is an element of the free abelian group Div(E)

generated by symbols [P ], where P ∈ E(K); that is,

D =
∑
P ∈E

nP [P ], nP ∈ Z, nP = 0, for all but finitely many P.

2. The degree of a divisor D =
∑

P ∈E nP [P ] is

deg(D) =
∑
P ∈E

nP .

3. Fact: The divisors of degree 0 form a subgroup Div0(E) of Div(E).



Divisors

Let E be an elliptic curve over K. Let K(E) denote the function field
of E.

4. For P ∈ E(K), there is a function uP , the uniformizer at P such
that

uP (P ) = 0 and every f ∈ K(E) can be written as f = ur
P g.

The order of f at P is r =: ordP (f).
ordP (f) > 0 means P is a zero of f
ordP (f) < 0 means P is a pole of f

5. For f ∈ K(E) (f ̸≡ 0), the divisor of f is

div(f) =
∑
P ∈E

ordP (f)[P ] ∈ Div(E).



Divisors

Let E be an elliptic curve over K. Let K(E) denote the function field
of E.

6. f ∈ K(E) has only finitely many zeros and poles.
7. deg(div(f)) = 0
8. div(f) = 0 if and only if f is constant.
9. A divisor D ∈ Div(E) is called principal if D = div(f) for some f .

10. D1, D2 ∈ Div(E) are said to be linearly equivalent, written
D1 ∼ D2, if

D1 −D2 = div(f), for some f.

11. Pic(E) = Div(E)/(principal divisors);
Pic0(E) = Div0(E)/(principal divisors)



Riemann-Roch

Definition
A divisor D =

∑
P ∈E aP [P ] is said to be positive (written “D ≥ 0”) if

aP ≥ 0 for all P ∈ E.
Let D ∈ Div(E). Define

L(D) := {f ∈ K(E)∗ : div(f) +D ≥ 0} ∪ {0}.

Note that dimK L(D) < ∞.
Remarks:

◦ L(0) = K.
◦ D1 ∼ D2 implies L(D1) = L(D2).

Riemann-Roch Theorem

dimK L(D) = deg(D),

for all divisors D ∈ Div(E) with degD ≥ 0.



Consequences

Corollary
Let P,Q ∈ E. Then (P ) ∼ (Q) if and only P = Q.

Proposition
Let E/K be an elliptic curve.

a For every D ∈ Div0(E), there exists a unique P ∈ E such that
D ∼ (P ) − (O).
Define σ : Div0(E) → E to be the map that sends D to its
associated P .

b The map σ is surjective.
c Let D1, D2 ∈ Div0(E). Then

σ(D1) = σ(D2) if and only if D1 ∼ D2.



Proposition (cont.)

d Thus σ induces a bijection of sets (also denoted by σ),

σ : Pic0(E) → E,

with inverse given by

κ : E → Pic0(E), P 7→ (divisor class of (P ) − (O)).

(e) If E is given by a Weierstrass equation then the “geometric group
law” on E and the “algebraic group law” on Pic0(E) using σ are
the same.

Corollary
Let D =

∑
P ∈E nP [P ] ∈ Div(E). Then D is a principal divisor if and

only if
∑

P ∈E nP = 0 and
∑

P ∈E [nP ]P = O.



Weil pairing construction
Let E/K be an elliptic curve. Assume that char(K) ∤ n.
Let T ∈ E[n]. Then there is a function f such that

div(f) = n(T ) − n(O).

Similarly, if we let T ′ ∈ E with [n]T ′ = T , then there is a function g such that

div(g) =
∑

R∈E[n]

(T ′ +R) − (R).

Then
div(f ◦ [n]) = div(gn).

After scaling, we may suppose f ◦ [n] = gn.
If S ∈ E[n], then for any X ∈ E,

g(X + S)n = f([n]X + [n]S) = f([n]X) = g(X)n.

We now define en : E[n] × E[n] → µn by

en(S, T ) := g(X + S)
g(X) .


