Computations with Modular Forms 16 January 2023

1. Hecke operators and eigenforms.

- (a) Use the mfheckemat command to compute Hecke operators T_n in S_{24} . Verify that $T_nT_m = T_mT_n$ for a few pairs of coprime integers m and n.
- (b) Use the mfeigenbasis and mfcoefs commands to compute the q-expansions of the normalized eigenforms, say f_1 and f_2 , in S_{24} .
- (c) Verify computationally that the eigenvalues of T_n are the *n*th Fourier coefficients of the eigenforms f_1 and f_2 .
- (d) Compute the characteristic polynomial of the Hecke operator T_2 of S_k for several values of k. Make a conjecture. What would this imply for the coefficients of the degenforms in S_k ?
- (e) Find the q-expansions of the eigenforms in $S_2(\Gamma_0(26))$.
- 2. Values of the modular *j*-function. Let $K = \mathbb{Q}(\sqrt{D})$ where D < 0 and squarefree. Let

$$w_D = \begin{cases} \sqrt{D} & \text{if } d \equiv 2,3 \pmod{4} \\ (1+\sqrt{D})/2 & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

so that $\mathcal{O}_K = \mathbb{Z}[w_D]$.

- (a) Compute $j(w_D)$ for several values of D.
- (b) Compute the class number of \mathcal{O}_K for the same values of D.
- (c) Make a conjecture relating $j(w_D)$ and \mathcal{O}_K . Then test this conjecture for large values of |D|. (Example: Test your conjecture for D = -163, -187, -211.)