Computations with Modular Forms
 16 January 2023

1. Hecke operators and eigenforms.

(a) Use the mfheckemat command to compute Hecke operators T_{n} in S_{24}. Verify that $T_{n} T_{m}=T_{m} T_{n}$ for a few pairs of coprime integers m and n.
(b) Use the mfeigenbasis and mfcoefs commands to compute the q-expansions of the normalized eigenforms, say f_{1} and f_{2}, in S_{24}.
(c) Verify computationally that the eigenvalues of T_{n} are the nth Fourier coefficients of the eigenforms f_{1} and f_{2}.
(d) Compute the characteristic polynomial of the Hecke operator T_{2} of S_{k} for several values of k. Make a conjecture. What would this imply for the coefficients of thermalized) ${ }_{\wedge}$ (ngenforms in S_{k} ?
(e) Find the q-expansions of the (nermalized) eigenforms in $^{2} S_{2}\left(\Gamma_{0}(26)\right)$.
2. Values of the modular j-function. Let $K=\mathbb{Q}(\sqrt{D})$ where $D<0$ and squarefree. Let

$$
w_{D}= \begin{cases}\sqrt{D} & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ (1+\sqrt{D}) / 2 & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

so that $\mathcal{O}_{K}=\mathbb{Z}\left[w_{D}\right]$.
(a) Compute $j\left(w_{D}\right)$ for several values of D.
(b) Compute the class number of \mathcal{O}_{K} for the same values of D.
(c) Make a conjecture relating $j\left(w_{D}\right)$ and \mathcal{O}_{K}. Then test this conjecture for large values of $|D|$. (Example: Test your conjecture for $D=-163,-187,-211$.)

